在您的電源中很容易找到作為寄生元件的 100fF 電容器。您必須明白,只有處理好它們才能獲得符合 EMI 標(biāo)準(zhǔn)的電源。
從開關(guān)節(jié)點(diǎn)到輸入引線的少量寄生電容(100 毫微微法拉)會讓您無法滿足電磁干擾 (EMI) 需求。那 100fF 電容器是什么樣子的呢?在 Digi-Key 中,這種電容器不多。即使有,它們也會因寄生問題而提供寬泛的容差。
不過,在您的電源中很容易找到作為寄生元件的 100fF 電容器。只有處理好它們才能獲得符合 EMI 標(biāo)準(zhǔn)的電源。
圖 1 是這些非計(jì)劃中電容的一個(gè)實(shí)例。圖中的右側(cè)是一個(gè)垂直安裝的 FET,所帶的開關(guān)節(jié)點(diǎn)與鉗位電路延伸至了圖片的頂部。輸入連接從左側(cè)進(jìn)入,到達(dá)距漏極連接 1cm 以內(nèi)的位置。這就是故障點(diǎn),在這里 FET 的開關(guān)電壓波形可以繞過 EMI 濾波器耦合至輸入。
圖 1. 開關(guān)節(jié)點(diǎn)與輸入連接臨近,會降低 EMI 性能
(點(diǎn)擊查看全圖)
注意,漏極連接與輸入引線之間有一些由輸入電容器提供的屏蔽。該電容器的外殼連接至主接地,可為共模電流提供返回主接地的路徑。如圖 2 所示,這個(gè)微小的電容會導(dǎo)致電源 EMI 簽名超出規(guī)范要求。
圖 2. 寄生漏極電容導(dǎo)致超出規(guī)范要求的 EMI 性能(點(diǎn)擊查看全圖)
這是一條令人關(guān)注的曲線,因?yàn)樗从吵隽藥讉€(gè)問題:明顯超出了規(guī)范要求的較低頻率輻射、共模問題通常很明顯的 1MHz 至 2MHz 組件,以及較高頻率組件的衰減正弦 (x)/x 分布。
需要采取措施讓輻射不超出規(guī)范。我們利用通用電容公式將其降低了:
C = ε • A/d
我們無法改變電容率 (ε),而且面積 (A) 也已經(jīng)是最小的了。不過,我們可以改變間距 (d)。如圖 3 所示,我們將組件與輸入的距離延長了 3 倍。最后,我們采用較大接地層增加了屏蔽。
圖 3. 這個(gè)修改后的布局不僅可增加間距,而且還可帶來屏蔽性能
(點(diǎn)擊查看全圖)
圖 4 是修改后的效果圖。我們在故障點(diǎn)位置為 EMI 規(guī)范獲得了大約 6dB 的裕量。此外,我們還顯著減少了總體 EMI 簽名。所有這些改善都僅僅是因?yàn)椴季值恼{(diào)整,并未改變電路。如果您的電路具有高電壓開關(guān)并使用了屏蔽距離,您需要非常小心地對其進(jìn)行控制。
圖 4. EMI 性能通過屏蔽及增加的間距得到了改善
(點(diǎn)擊查看全圖)
總之,來自離線開關(guān)電源開關(guān)節(jié)點(diǎn)的 100fF 電容會導(dǎo)致超出規(guī)范要求的 EMI 簽名。這種電容量只需寄生元件便可輕松實(shí)現(xiàn),例如對漏極連接進(jìn)行路由,使其靠近輸入引線。通??赏ㄟ^改善間距或屏蔽來解決該問題。要想獲得更大衰減,需要增加濾波或減緩電路波形。