每一代高端處理器、FPGA和ASIC都因更重的負載而增加了電源的負擔(dān),但是系統(tǒng)設(shè)計師很少為了符合這種功率增大的情況而額外分配寶貴的系統(tǒng)電路板空間。由于廣泛需要更多專用和安裝在電路板上的電源,以向多個電壓軌提供POL(負載點)調(diào)節(jié),所以這種對電源的擠壓就更嚴(yán)重了。個別電源軌必須越來越多地在低電壓(≤1V)下支持數(shù)10A至超過100A的電流,因而要求大約1%的初始準(zhǔn)確度和出色的負載瞬態(tài)偏差(低于幾%)。因此挑戰(zhàn)是找到準(zhǔn)確和能在低電壓提供大的負載電流同時占用很少系統(tǒng)電路板空間的電源解決方案。
當(dāng)發(fā)現(xiàn)一款功能合適的穩(wěn)壓器解決方案時,必須對其進行功率損失和熱阻評估。倘若這兩項參數(shù)不能滿足系統(tǒng)的散熱要求(特別是當(dāng)系統(tǒng)必須在高環(huán)境溫度條件下運作時),就會導(dǎo)致一款原本不錯的穩(wěn)壓器解決方案大打折扣。顯然,轉(zhuǎn)換效率必須很高,以限制功率損耗,而且封裝設(shè)計必須具備很低的內(nèi)部熱阻以及很低的環(huán)境連接熱阻。隨著解決方案的縮小,穩(wěn)壓器和電路板之間的熱阻面積也減小了,這就使得保持電路板低溫度更加困難了,因為電源穩(wěn)壓器通常將大多數(shù)功率損耗傳導(dǎo)到系統(tǒng)電路板中,從而顯著提高了系統(tǒng)的內(nèi)部溫度。
真正的問題:熱量和冷卻成本
系統(tǒng)和熱設(shè)計工程師花費大量時間對這些復(fù)雜的電子系統(tǒng)進行建模和評估,以設(shè)計能去除以熱量形式體現(xiàn)功率損耗的解決方案。一般用空氣流動和散熱器來去除這種不想要的熱量。真正的問題是,隨著系統(tǒng)內(nèi)部溫度的升高,新式處理器、FPGA和定制ASIC通常消耗顯著增大的功率。不幸的是,這需要電源穩(wěn)壓器提供更多功率,而且將增大內(nèi)部功率損耗,從而進一步升高系統(tǒng)溫度。因此,消除功率損耗和熱量是非常重要,而且高密度電源解決方案必須限制功率損耗,并有效地消除熱量。但是,封裝極其緊湊的電源解決方案要么耗散過多的功率,要么無法有效地移除熱量,因此假如不實施大幅度的降額就不能在高溫環(huán)境中運作。需要一種適合的解決方案來幫助緩解這一實際問題。
毫不奇怪,為了使大功率設(shè)計的溫度保持在合理水平,注意冷卻方法是至關(guān)重要的。安裝風(fēng)扇、冷卻板、散熱器以及有時將系統(tǒng)浸沒到特殊液體中都是一些設(shè)計師被迫采用的方法的實例。所有這些方法都是昂貴但必要的。不過,如果一個大功率負載點穩(wěn)壓器能提供所需功率,同時能均勻和高效率地消散熱量,那么冷卻這部分電路的要求就會降低,從而能減少冷卻系統(tǒng)的尺寸、重量、維護工作和成本。
功率密度是誤導(dǎo)
談?wù)摳吖β拭芏?a class="innerlink" href="http://ihrv.cn/tags/DC/DC" title="DC/DC" target="_blank">DC/DC穩(wěn)壓器是誤導(dǎo)的,因為它不涉及器件溫度問題。當(dāng)系統(tǒng)設(shè)計師決定選用一款可滿足系統(tǒng)對于DC/DC穩(wěn)壓器的電氣、物理和電源要求的產(chǎn)品時,應(yīng)當(dāng)教會他們從器件的產(chǎn)品手冊中尋覓到更多的相關(guān)信息。下面舉一個例子:如果一個2cm x 1cm的DC/DC穩(wěn)壓器向負載提供54W功率,它的功率密度額定值為27W/cm2.這一數(shù)字也許會給一些設(shè)計師留下深刻印象,并滿足他們的搜尋要求:想要的功率、想要的尺寸和想要的價格。不過,被忘記的是熱量最終會轉(zhuǎn)變成溫度上升。如欲獲取重要的相關(guān)信息,則需研究分析DC/DC穩(wěn)壓器的熱阻抗,尋找封裝的“結(jié)點至外殼”、“結(jié)點至空氣”和“結(jié)點至PCB”熱阻數(shù)值。
繼續(xù)看上面的例子,該器件還有另一個吸引人的屬性。它以令人印象深刻的90%的效率工作。它消耗6W功率,同時提供54W輸出,所采用的封裝具備20℃/W結(jié)點至空氣的熱阻。6W乘以20℃/W,結(jié)果為在環(huán)境溫度之上升高120℃。當(dāng)在45℃的環(huán)境溫度時,這個似乎令人印象深刻的DC/DC穩(wěn)壓器封裝結(jié)溫的計算結(jié)果就是165℃。165℃不是一個令人感覺很好的值,原因有兩點:(a)它高于大多數(shù)硅IC大約為120℃的最高溫度;(b)它需要特別關(guān)注,以保持結(jié)溫在一個低于120℃的較安全值。
上述的簡單計算有時會被忽視了。一個看似滿足所有電氣和功率要求的DC/DC穩(wěn)壓器未能滿足系統(tǒng)的熱量指導(dǎo)原則,或者被證明由于在安全的溫度環(huán)境中工作需要采取額外措施,因此用起來太過昂貴。在首次參與評估電壓、電流和尺寸等屬性時,記著研究DC/DC穩(wěn)壓器的熱性能是很重要的。
本文將介紹一種新的高密度和可擴展的LTM4620微型模塊(μModule)穩(wěn)壓器。內(nèi)容將包括電氣、機械/封裝和熱性能以及不同的可擴展型電源設(shè)計。目標(biāo)是展示一種新的高密度、可擴展的電源穩(wěn)壓器,該穩(wěn)壓器具備卓越的電氣性能、低功率損耗和獨特的耐熱增強型封裝設(shè)計,可幫助克服高功率密度挑戰(zhàn)。
LTM4620雙通道13A或單通道26A μModule穩(wěn)壓器
圖1顯示了LTM4620 μModule穩(wěn)壓器的照片。LTM4620采用SIP(系統(tǒng)級封裝),是15mm x 15mm x 4.41mm LGA器件。它能在13A時提供兩個獨立輸出,或在26A時提供單個輸出。該封裝支持在頂部和底部安裝散熱系統(tǒng),以實現(xiàn)卓越的熱量管理。
圖1:LTM4620封裝:15mm x 15mm x 4.41mm LGA
圖2顯示了LTM4620 μModule穩(wěn)壓器的方框圖。LTM4620由兩個高性能同步降壓型穩(wěn)壓器組成。輸入電壓范圍為4.5V至16V,輸出電壓范圍為0.6V至2.5V,而LTM4620A的輸出電壓范圍為0.6V至5.5V.LTM4620的電氣特性為±1.5%的總輸出準(zhǔn)確度、經(jīng)過全面測試的準(zhǔn)確均流、快速瞬態(tài)響應(yīng)、具備自定時和可編程相移的多相并聯(lián)工作、頻率同步以及準(zhǔn)確的遠端采樣放大器。
保護功能包括反饋參考的輸出過壓保護、折返過流保護和內(nèi)部溫度二極管監(jiān)視。
圖2:LTM4620方框圖
INTERNAL COMP:內(nèi)部比較器
POWER CONTROL:電源控制
LTM4620獨特的封裝設(shè)計
圖3顯示了一個尚未模制的LTM4620之染色側(cè)視圖和頂視圖。封裝設(shè)計由熱傳導(dǎo)性很高的BT襯底和足夠的銅箔層組成,以提高電流承載能力并實現(xiàn)至系統(tǒng)電路板的低熱阻。一種專有引線框架功率MOSFET棧用來提供高功率密度、低互連電阻、以及給器件的頂部和底部提供很高的熱傳導(dǎo)性。專有散熱器設(shè)計連接到功率MOSFET棧和功率電感器上,以提供有效的頂部散熱??梢栽陧敳康穆懵督饘倜嫔霞由弦粋€外部散熱器,以利用空氣流動去除熱量。由于該專有散熱器的構(gòu)造和模制封裝,僅有氣流而沒有散熱器就可去除頂部的熱量。
圖3:LTM4620的染色側(cè)視圖和尚未模制的LTM4620
Top Side Heat Sinking:頂部散熱
Bottom Side Heat Sinking:底部散熱
Power MOSFET Stack:功率MOSFET棧
Power Inductors:功率電感器
圖4顯示了LTM4620的熱像以及在26A設(shè)計時12V至1V的降額曲線。當(dāng)具有200LFM氣流時,溫升僅為35℃(在環(huán)境溫度以上),而且降額曲線顯示:一直到大約80℃時最大負載電流都無需降額。圖4顯示了熱量數(shù)據(jù),這些數(shù)據(jù)顯示了耐熱增強型高密度電源穩(wěn)壓器解決方案的真正優(yōu)點。獨特的封裝設(shè)計在小尺寸中盡可能減少功率損耗,并有效地去除了作為功率損耗函數(shù)的熱量。
圖4:LTM4620熱像及減額曲線
CURRENT:電流
AMBIENT TEMPERATURE:環(huán)境溫度
LTM4620的電氣性能
圖5顯示以雙輸出均流模式工作的LTM4620.這種配置提供密度非常高的1.5V/26A解決方案。RUN、TRACK、COMP、VFB、PGOOD和VOUT引腳連接在一起,以實現(xiàn)并聯(lián)工作。該設(shè)計顯示了一種利用一個LTC2997溫度傳感器監(jiān)視器監(jiān)視LTM4620內(nèi)部溫度二極管的方式。溫度采樣二極管可由很多不同的器件監(jiān)視,這些器件監(jiān)視一個連接二極管的晶體管。
圖5:LTM4620、兩相1.5V/26A并聯(lián)輸出
5V TO 16V INTERMEDIATE BUS:5V至16V中間總線
PULL-UP RESISTOR AND ZENER ARE OPTIONAL:上拉電阻器和齊納二極管是可選的
圖6顯示兩相并聯(lián)輸出、1.5V時的效率和兩通道均流性能。就如此高密度的解決方案而言,86%的效率是相當(dāng)好的,而且正如圖4的熱量數(shù)據(jù)所示,由于電路板安裝后的低θJA熱阻,溫度上升得到了良好控制。有效的頂部和底部散熱系統(tǒng)使LTM4620能以很少的溫度上升及滿功率工作。圖6顯示了VOUT1和VOUT2的均流性能。LTM4620的內(nèi)部控制器經(jīng)過了準(zhǔn)確微調(diào)和測試,以實現(xiàn)輸出均流。這使LTM4620成為高密度、可擴展電源解決方案的卓越選擇。高效率和快速瞬態(tài)響應(yīng)電流模式架構(gòu)很好地滿足了高性能處理器、FPGA和定制ASIC所需的低壓內(nèi)核電源要求。
圖6:兩相、1.5V的效率和均流圖
EFFICIENCY:效率
OUTPUT CURRENT:輸出電流
Dual LTM4620 Single Output Current Sharing:雙LTM4620單輸出均流
TOTAL CURRENT:總電流
出色的輸出電壓初始準(zhǔn)確度和差分遠端采樣在負載點提供適當(dāng)?shù)腄C電壓調(diào)節(jié)。獨特的熱量控制能力和卓越的均流允許將輸出電流能力擴展至高達超過100A.為每個穩(wěn)壓器通道設(shè)定多相工作無需外部相移時鐘源。每個LTM4620具有一個“時鐘輸入”引腳和一個“時鐘輸出”引腳,以及用于對并聯(lián)通道進行定時的內(nèi)部可編程相移功能??梢赃x擇外部頻率同步或內(nèi)部內(nèi)置定時。這些定時功能進一步實現(xiàn)了功率調(diào)整概念。
圖7顯示了8相、4個μModule穩(wěn)壓器100A設(shè)計圖片以及所有4個穩(wěn)壓器的均流圖。所有8個相位是定時相位,并連接到一起以實現(xiàn)可擴展至100A的均流方案。正如圖7注釋所示,要支持100A的電源解決方案,實際的μModule穩(wěn)壓器占用的電路板空間大約為1.95平方英寸。這就為這類大電流提供了卓越的高密度電源解決方案。一個散熱器可以運用到所有4個模塊上,以通過空氣流動去除電源損耗。這可防止大量電源損耗消散到系統(tǒng)電路板中。
圖7:8相、4個μModule穩(wěn)壓器可擴展至100A的設(shè)計
SINGLE uModule OUTPUT CURRENT:單個μModule輸出電流
100A Four uModules in Parallel Current Sharing:4個μModule并聯(lián)均流100A
TOTAL CURRENT:總電流
性能證明
為了驗證LTM4620的性能,我們提供了4段視頻短片,以顯示設(shè)定和測量方法。這些視頻短片涵蓋的主題包括:短路保護、在26A和100A時的熱量表現(xiàn)和溫度上升、散熱器連接以及在啟動、穩(wěn)定狀態(tài)和停機時的精確均流。如需觀看這些視頻,請訪問:http://video.linear.com.cn/p4634-126.
結(jié)論
LTM4620 μModule穩(wěn)壓器為高密度電源解決方案提供了一種新概念。這款高性能穩(wěn)壓器裝在一個進行了卓越的熱設(shè)計的封裝中,使大功率設(shè)計能在非常小的外形尺寸內(nèi)實現(xiàn)。具備準(zhǔn)確均流的多相定時功能實現(xiàn)了25A、50A和超過100A的可擴展設(shè)計。LTM4620獨特的熱特性在環(huán)境溫度逐漸上升時,允許全功率工作。在實現(xiàn)大電流設(shè)計的同時,還可以將功率損耗和溫度控制在可接受的水平。