《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 對(duì)推挽逆變器中變壓器漏感尖峰有源鉗位的研究
對(duì)推挽逆變器中變壓器漏感尖峰有源鉗位的研究
摘要: 本文從原理出發(fā)分析了在推挽逆變器中兩開(kāi)關(guān)管漏極產(chǎn)生尖峰的原因,提出了改進(jìn)方法,并在實(shí)際應(yīng)用中得到驗(yàn)證是可行的,相比于傳統(tǒng)推挽逆變器,極大地提升了了性能,提高了效率和穩(wěn)定性。
Abstract:
Key words :

  一 推挽" title="推挽">推挽逆變器" title="逆變器">逆變器的原理分析

  主電路如圖1所示:

  

  Q1,Q2理想的柵極(UG1,UG2)漏極(UD1,UD2)波形如圖2所示:

  

 

  實(shí)際輸出的漏極波形:

 

  

  從實(shí)際波形中可以看出,漏極波形和理想波形存在不同:在Q1,Q2兩管同時(shí)截止的死區(qū)處都長(zhǎng)了一個(gè)長(zhǎng)長(zhǎng)的尖峰" title="尖峰">尖峰,這個(gè)尖峰對(duì)逆變器/UPS性能的影響和開(kāi)關(guān)管Q1,Q2的威脅是不言而喻的,這里就不多說(shuō)了。

  二 Q1,Q2兩管漏極產(chǎn)生尖峰的成因分析

  從圖1中可以看出,主電路功率元件是開(kāi)關(guān)管Q1,Q2和變壓器" title="變壓器">變壓器T1。 Q1,Q2的漏極引腳到TI初級(jí)兩邊走線存在分布電感, T1初級(jí)存在漏感" title="漏感">漏感,當(dāng)然T1存在漏感是主要的。考慮到漏感這個(gè)因素我們畫(huà)出推挽電路主電路等效的原理圖如圖4所示:

  

  從圖4中可以看出L1,L2就等效于變壓器初級(jí)兩邊的漏感,我們來(lái)分析一下Q1導(dǎo)通時(shí)的情形:當(dāng)Q1的柵極加上足夠的驅(qū)動(dòng)電壓后飽和導(dǎo)通,電池電壓加到漏感L1和變壓器T1初級(jí)上半部分,當(dāng)然絕大部分是加到T1初級(jí)上半部分,因?yàn)長(zhǎng)1比T1初級(jí)上半部分電感小得多。此時(shí)Q2是截止的,主電路電流方向?yàn)閺碾姵卣龢O到T1初級(jí)上半部分到L1到Q1的DS再回到電池的負(fù)極;L1上電壓的極性為左負(fù)右正,T1初級(jí)上半部分電壓的極性為上負(fù)下正,如圖5所示:

  

  當(dāng)Q1柵極信號(hào)由高電平變?yōu)榈碗娖綍r(shí),此時(shí)Q2也還截止,即死區(qū)處Q1,Q2都不導(dǎo)通,T1初級(jí)上半部分由于和次級(jí)耦合的原因,能量?jī)H在Q1導(dǎo)通時(shí)向次級(jí)傳遞能量,到Q1截止時(shí)T1初級(jí)上半部分上端的電位已恢復(fù)到電池電壓,而L1可以看做是是一個(gè)獨(dú)立的電感,它儲(chǔ)存的能量耦合不到變壓器T1的次級(jí)。但是,隨著Q1由導(dǎo)通轉(zhuǎn)向截止,L1上的電流迅速減小,大家知道電感兩端的電流是不能突變的,根據(jù)自感的原理L1必然要產(chǎn)生很高的反向感生電動(dòng)勢(shì)來(lái)阻礙它電流的減小,所以此時(shí)電感電壓的極性和圖5相反,T1初級(jí)上半部分的電壓為0,兩端點(diǎn)的電壓都等于電池電壓,此時(shí)Q1漏極的電壓就等于L1兩端的電壓和電池電壓之和,這就是Q1,Q2兩管漏極產(chǎn)生尖峰的原因,如圖6所示。

  

  三 Q1,Q2兩管漏極產(chǎn)生尖峰的消除

  上面我們已經(jīng)分析了Q1,Q2兩管漏極產(chǎn)生尖峰的原因,下面我們就來(lái)想辦法消除這個(gè)尖峰了。我想到的辦法就是Q1,Q2的漏極到電池的正極加一個(gè)開(kāi)關(guān),當(dāng)然這個(gè)開(kāi)關(guān)也由MOS管來(lái)充當(dāng),當(dāng)然其它功率管也行。這個(gè)開(kāi)關(guān)只在Q1,Q2都截止時(shí)才導(dǎo)通,用電路實(shí)現(xiàn)如圖7所示:

  

  由圖7可以看出,加入D1,D2可以防止Q3,Q4寄生二極管的導(dǎo)通,這樣,Q1,Q2漏極的尖峰就可以限制在D1,D2和Q3,Q4的壓降之和了,而這個(gè)壓降是很小的,漏感的尖峰的能量也釋放回電池和C1了。

  Q1,Q2,Q3,Q4的驅(qū)動(dòng)時(shí)序如圖8所示:

 

  

  加入了有源嵌位后實(shí)際輸出的波形如圖9所示:

  

  四 這個(gè)電路和全橋逆變電路的比較:

  看到這里,大家也許會(huì)說(shuō),這個(gè)電路和全橋電路不是一樣嗎?你的電路還多了兩個(gè)二極管。不錯(cuò),這個(gè)電路和那種兩橋臂上下管都互補(bǔ)的全橋電路來(lái)說(shuō)還是有些相似,最大的不同就是我這個(gè)電路主電路還是推挽,它的導(dǎo)通壓降還是一個(gè)MOS管的導(dǎo)通壓降,而全橋電路是兩個(gè)MOS管的導(dǎo)通壓降!對(duì)于采用低電壓大電流電池供電的應(yīng)用場(chǎng)合,這個(gè)電路的損耗更小,效率更高,因?yàn)槁└械膬?chǔ)能比較小, Q3,Q4選型時(shí)可以比Q1,Q2電流小得多,因而節(jié)約了成本。

  實(shí)際上Q3,Q4可以只用一個(gè)的,如圖10所示:

 

  驅(qū)動(dòng)邏輯改為,如圖11所示:

 

  

 

  總結(jié):本文從原理出發(fā)分析了在推挽逆變器中兩開(kāi)關(guān)管漏極產(chǎn)生尖峰的原因,提出了改進(jìn)方法,并在實(shí)際應(yīng)用中得到驗(yàn)證是可行的,相比于傳統(tǒng)推挽逆變器,極大地提升了了性能,提高了效率和穩(wěn)定性。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。