《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 新型高效WCDMA直放站PA方案
新型高效WCDMA直放站PA方案
摘要: 本文采用Scintera 公司內(nèi)部集成的新型預(yù)失真芯片SC1887,配合NXP 公司的BLF6G22LS-130,使用Doherty 結(jié)構(gòu),前級(jí)推動(dòng)使用BLM6G22-30G,最終完成WCDMA 30W 功率輸出,為直放站客戶提供了一種針對(duì)20W 整機(jī)的高效、節(jié)能的解決方案。
關(guān)鍵詞: 放大器 WCDMA 3G 射頻 直放站
Abstract:
Key words :

  隨著3G" title="3G">3G 技術(shù)的發(fā)展,系統(tǒng)容量的不斷提高,對(duì)系統(tǒng)的線性要求越來(lái)越高。功放作為通信系統(tǒng)的主要非線性單元,其性能的改善在整個(gè)系統(tǒng)中的作用至關(guān)重要。單純采用用功率回退的方法去滿足線性要求越來(lái)越困難,同時(shí)也難以滿足日益提高的效率要求。因而使得很多線性化技術(shù)被不斷應(yīng)用到功放設(shè)計(jì)中。

  目前已商用的線性化技術(shù)包括前饋、DPD 和模擬預(yù)失真。其中前饋技術(shù)主要的缺點(diǎn)是,誤差環(huán)路不能同時(shí)放大有用信號(hào),導(dǎo)致效率非常低;而DPD 技術(shù)主要的特點(diǎn)是,通過(guò)處理基帶信號(hào)達(dá)到預(yù)失真的效果,因此需要將射頻" title="射頻">射頻信號(hào)先轉(zhuǎn)化成基帶信號(hào),處理完成后再還原成射頻信號(hào)與PA 的輸出信號(hào)進(jìn)行合成,完成信號(hào)的校正,其最大的缺點(diǎn)是系統(tǒng)復(fù)雜、難以調(diào)試,有效帶寬受限。與以上兩種線性化手段相比較,模擬預(yù)失真系統(tǒng)結(jié)構(gòu)簡(jiǎn)單,容易調(diào)試,效率也可滿足需求,因此已成為現(xiàn)在比較受歡迎的線性化方法。

  不過(guò),模擬預(yù)失真最重要的就是選擇合適的非線性器件,其特性要和LDMOS 非常接近,才能模擬出PA 的非線性特性,最終達(dá)到預(yù)失真的效果。而這樣的器件選擇需要大量的實(shí)驗(yàn)數(shù)據(jù)和驗(yàn)證,這給前期研發(fā)帶來(lái)很大挑戰(zhàn)。

  本文采用Scintera 公司內(nèi)部集成的新型預(yù)失真芯片SC1887,配合NXP 公司的BLF6G22LS-130,使用Doherty 結(jié)構(gòu),前級(jí)推動(dòng)使用BLM6G22-30G,最終完成WCDMA" title="WCDMA">WCDMA 30W 功率輸出,為直放站" title="直放站">直放站客戶提供了一種針對(duì)20W 整機(jī)的高效、節(jié)能的解決方案。

  SC1887 預(yù)失真電路構(gòu)成

  與傳統(tǒng)的模擬預(yù)失真電路相比較,SC1887 大幅簡(jiǎn)化了預(yù)失真電路的結(jié)構(gòu),減少了外圍元器件的應(yīng)用,從而使得整個(gè)電路更加緊湊、更易小型化;同時(shí)進(jìn)一步提升了系統(tǒng)可靠性。實(shí)現(xiàn)原理如圖1 所示。

圖1 SC1887預(yù)失真實(shí)現(xiàn)框圖

  該電路采用了閉環(huán)結(jié)構(gòu),對(duì)消效果比傳統(tǒng)的開(kāi)環(huán)結(jié)構(gòu)更優(yōu)異。該芯片通過(guò)調(diào)節(jié)RFin、RFout 和FFFB 三個(gè)端口與各個(gè)巴倫之間的匹配,可以在600MHz 到2.8GHz 的帶寬內(nèi)正常工作。本方案采用村田制作所(Murata)的高Q 電容和低差損電感,將三個(gè)端口回波控制在18dB 以上(該板是采用Isola公司的專用板材IS680 設(shè)計(jì)的四層板)。同時(shí)可通過(guò)SPI 和計(jì)算機(jī)相連,隨時(shí)監(jiān)控其工作狀態(tài),使調(diào)試更加簡(jiǎn)捷高效。

  具體實(shí)現(xiàn)方案

  DXY 鼎芯實(shí)驗(yàn)室采用NXP 公司的高性能LDMOS,獨(dú)立設(shè)計(jì)出一種實(shí)用的Doherty 結(jié)構(gòu),與模擬預(yù)失真芯片SC1887 實(shí)現(xiàn)了完美結(jié)合。射頻方案中的預(yù)推動(dòng)采用NXP RFSS BGA6589,推動(dòng)級(jí)采用NXPBLM6G22-30G,末級(jí)采用NXP BLF6G22LS-130。相比于業(yè)內(nèi)其他廠家的產(chǎn)品,NXP 的LDMOS 效率高、增益高,在高效率、大功率功放應(yīng)用方面有著不可替代的優(yōu)勢(shì)。

  其中BLF6G22LS-130 單管增益可達(dá)17dB,飽和效率55%,做成Doherty 后增益也有15-16dB,末級(jí)6dB 回退效率在40%以上。BLM6G22-30G 是塑封的集成二級(jí)IC 管,增益高達(dá)28dB,效率高,是做大功率推動(dòng)級(jí)的首選方案。同時(shí)為了提高輸出功率,采用研通(Yantel)高頻技術(shù)公司最新推出的低插損電橋HC2100A03。

  SC1887 對(duì)RFin、RFFB 兩個(gè)端口的輸入信號(hào)強(qiáng)度都有一定動(dòng)態(tài)范圍要求。為了與功放更好的配合,在環(huán)路內(nèi)使用兩個(gè)ATT 電路,實(shí)時(shí)調(diào)節(jié)主通路和反饋通路的增益范圍,確保SC1887 在一定的功率輸出動(dòng)態(tài)范圍內(nèi)有很好的表現(xiàn)。具體實(shí)現(xiàn)電路原理如圖2 所示。

圖2 功放原理框圖

  測(cè)試結(jié)果分析

  測(cè)試結(jié)果如表1所示。從測(cè)試數(shù)據(jù)可以看出,在Pout=44.7dBm時(shí),對(duì)消后ACPR在52dBC以上,可以滿足3GPP頻譜發(fā)射模板。效率可以做到27%,比普通回退功放提高10%以上,顯著減少了能耗,遠(yuǎn)遠(yuǎn)超出運(yùn)營(yíng)商的招標(biāo)要求,符合當(dāng)今節(jié)能環(huán)保、綠色低碳的發(fā)展需求。

  通過(guò)分析以上測(cè)試結(jié)果可以看出,該方案有如下幾大優(yōu)勢(shì):

  1.效率高:采用Doherty加模擬預(yù)失真的線性化技術(shù),該方案與普通的HPA相比,效率至少提高10%以上。

  2.成本低:功放管在整個(gè)功放成本中占主要地位,同樣的功率輸出,該方案比傳統(tǒng)的HPA減少一半的使用量,節(jié)省成本。

  3.結(jié)構(gòu)簡(jiǎn)單,易于調(diào)試:簡(jiǎn)化了預(yù)失真電路的結(jié)構(gòu),減少了外圍元器件的應(yīng)用,使得整個(gè)電路更加緊湊,提高了整個(gè)系統(tǒng)的可靠性和一致性,便于生產(chǎn)調(diào)試。
圖3 2140MHZ 測(cè)試結(jié)果 圖4 WCDMA30W PA方案測(cè)試平臺(tái)

  附錄:功放的非線性失真及傳統(tǒng)模擬預(yù)失真的實(shí)現(xiàn)

  功放的非線性失真特性主要由AM-AM失真、AM-PM失真兩個(gè)特性來(lái)表征,如圖4所示。

圖4 功放的AM-AM、AM-PM特性示意圖

  為了便于分析,我們忽略功放的記憶效應(yīng),將功放的傳輸特性標(biāo)識(shí)為:

  Vo(t)=f[Vi(t)] (1)

  其中Vi(t)、Vo(t)分別為功放的輸入和輸出電壓。將該式用泰勒級(jí)數(shù)展開(kāi),取前3項(xiàng),得到式(2):

  Vo(t)=k1Vi(t)+k2Vi2(t)+K3Vi3(t) (2)

  為簡(jiǎn)化分析過(guò)程,我們假設(shè)輸入為點(diǎn)頻信號(hào),即Vi=Acosω1t,則輸出信號(hào)為:

  Vo(t)=0.5K2A2+(k1A+0.75k3A3)cosω1t+0.5k2A2cos2ω1t+ 0.25k3A3cos3ω1t (3)

  從式3可以看出,由于功放的非線性,輸出信號(hào)中不僅包含有輸入信號(hào)頻率分量,還出現(xiàn)了新的直流分量、二次諧波和三次諧波分量。其中,基波分量的振幅為  k1[1+0.75(k3/k1)A2]A,其中k1為線性增益,0.75k3A2是非線性失真。

  當(dāng)k3>0時(shí),k1[1+0.75(k3/k1)A2]>k1 ,此時(shí)增益呈現(xiàn)擴(kuò)張?zhí)匦?;反之,?dāng)k3< 0時(shí),k1[1+0.75(k3/k1)A2] 0的增益擴(kuò)張?zhí)匦?,傳統(tǒng)的預(yù)失真器就是要找到這樣的器件來(lái)完成預(yù)失真效果。

  AM-PM失真是指輸出信號(hào)的相位隨輸入信號(hào)幅度的變化而變化。對(duì)于一個(gè)理想的放大器,它的輸出信號(hào)的相位和輸入信號(hào)的幅度無(wú)關(guān)。然而,在實(shí)際的放大器中,輸入信號(hào)的幅度調(diào)制會(huì)導(dǎo)致輸出信號(hào)的相位調(diào)制,一般用貝塞爾函數(shù)表示,如下:

  實(shí)際表明,當(dāng)輸入信號(hào)為小功率信號(hào)時(shí),功放的非線性主要以AM-AM失真為主;而當(dāng)輸入信號(hào)為大功率信號(hào)時(shí),AM-PM失真較之前者對(duì)功放線性的影響更為明顯。

  功放的非線性主要是由k3<0產(chǎn)生增益壓縮而產(chǎn)生的。模擬預(yù)失真的原理就是要找到一個(gè)k3>0的器件與功放串聯(lián),使兩者的非線性相互抵消,使最終功放輸出的信號(hào)保證在線性狀態(tài)下。其原理如圖5所示。

圖5 預(yù)失真原理框圖
 

  為了保證足夠的對(duì)消效果,一般預(yù)失真都采用雙環(huán)結(jié)構(gòu),其實(shí)現(xiàn)框圖如圖6所示。

圖6 模擬預(yù)失真實(shí)現(xiàn)框圖

  其中通路III、IV構(gòu)成預(yù)失真產(chǎn)生環(huán)路,合路后經(jīng)通路V通過(guò)必要的衰減和移相再與通路I的主信號(hào)合成最終完成預(yù)失真的效果。一般通路IV上的IM3產(chǎn)生器的器件選擇都比較嚴(yán)格。

  整個(gè)電路需要IV、V兩個(gè)通路同時(shí)嚴(yán)格的調(diào)整衰減和相位,結(jié)構(gòu)比較復(fù)雜,調(diào)試難度也很高。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。