《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 基于ARM的毫米波天線自動對準平臺設(shè)計
基于ARM的毫米波天線自動對準平臺設(shè)計
摘要: 在毫米波中繼通信設(shè)備中,為提高對準精度,縮短對準時間,滿足快速反應(yīng)的要求,并結(jié)合毫米波波瓣窄,方向性強的特點,創(chuàng)造性地提出了毫米波天線自動對準平臺系統(tǒng)的設(shè)計方案。在天線對準過程中,將復雜的的空間搜索轉(zhuǎn)換成兩個簡單的水平和垂直搜索,簡化了搜索控制算法。采用基于ARM的32位微處理器LPC2294進行控制,用步進電機驅(qū)動平臺和毫米波設(shè)備轉(zhuǎn)動,實現(xiàn)毫米波通信設(shè)備的快速準確對準。毫米波中繼通信設(shè)備在國內(nèi)還處于研發(fā)改進階段,所以該對準平臺系統(tǒng)具有極大的參考意義。
Abstract:
Key words :

毫米波中繼通信設(shè)備中,為提高對準精度,縮短對準時間,滿足快速反應(yīng)的要求,并結(jié)合毫米波波瓣窄,方向性強的特點,創(chuàng)造性地提出了毫米波天線自動對準平臺系統(tǒng)的設(shè)計方案。在天線對準過程中,將復雜的的空間搜索轉(zhuǎn)換成兩個簡單的水平和垂直搜索,簡化了搜索控制算法。采用基于ARM 的32 位微處理器LPC2294 進行控制,用步進電機驅(qū)動平臺和毫米波設(shè)備轉(zhuǎn)動,實現(xiàn)毫米波通信設(shè)備的快速準確對準。毫米波中繼通信設(shè)備在國內(nèi)還處于研發(fā)改進階段,所以該對準平臺系統(tǒng)具有極大的參考意義。

毫米波作為一項尖端學科在中繼通信方面發(fā)揮著越來越重要的作用。但毫米波波瓣窄,方向性強,導致天線對準困難,存在對通時間長,甚至難以對準的問題,不能滿足快速反應(yīng)的要求。因此,需要一種高效的毫米波天線自動對準裝置來提高天線架裝與對準速度,縮短天線架裝與對準時間,以適應(yīng)快速準確通信的需要。本文從多任務(wù)處理和可靠性等角度出發(fā),提出了一種基于ARM7 的32 位微處理器LPC2294 和實時多任務(wù)操作系統(tǒng)uC/ OS-Ⅱ步進電機控制平臺的方法,將毫米波通信設(shè)備架裝在平臺系統(tǒng)上,從而使毫米波通信設(shè)備通過平臺的轉(zhuǎn)動快速對準。

1 系統(tǒng)工作原理

在隨機狀態(tài)下,通信設(shè)備中兩個天線的軸線一般位于不同的平面內(nèi),故天線對準實際上是一個較復雜的空間搜索問題。從天線軸線在兩正交平面( 方位平面和俯仰平面) 內(nèi)的投影可以看出,只要分別在方位面和俯仰面內(nèi)調(diào)整即可將兩天線對準。這種調(diào)整方式將空間搜索轉(zhuǎn)換成兩個簡單的水平和垂直面搜索,可以簡化搜索控制算法。天線對準時,兩天線的方位指向誤差較大,而俯仰指向誤差不會太大。故可先實現(xiàn)方位對準,然后調(diào)整俯仰指向,實現(xiàn)兩個天線的完全對準?;谏鲜鎏攸c,將天線安裝在內(nèi)框的俯仰平面上,如圖1 所示。

實際使用時,通信設(shè)備通過平臺架裝在天線升降器上,最高可以距地面10 m,并可以根據(jù)需要升降。采用單軸步進式跟蹤方案,俯仰方向和水平方向的轉(zhuǎn)動共用一個電機,通過繼電器進行切換。根據(jù)平臺的轉(zhuǎn)動規(guī)律,在ARM 控制器中,編程實現(xiàn)間歇式發(fā)送脈沖,由電機驅(qū)動器放大脈沖,從而驅(qū)動步進電機,最后由機械裝置轉(zhuǎn)動平臺以及與其相連的通信設(shè)備,完成對毫米波通信設(shè)備間方向的搜索與對準。

圖1 平臺結(jié)構(gòu)示意圖

2 系統(tǒng)硬件構(gòu)成

該平臺對準系統(tǒng)主要由平臺控制板、電機驅(qū)動器、步進電機、機械傳動裝置和相關(guān)傳感器( 羅盤和GPS)等組成。圖2 給出了步進電動機的片外連接硬件結(jié)構(gòu)框圖。本文重點介紹其核心 ARM 控制部分。

圖2 平臺控制板硬件結(jié)構(gòu)框圖

2. 1 ARM 處理器簡介

ARM 的32 位體系結(jié)構(gòu)被公認為業(yè)界領(lǐng)先的32 位嵌人式RISC 處理器結(jié)構(gòu)。LPC2294 是飛利浦公司生產(chǎn)的32 位ARM7TDMI S 微處理器,具有低功耗、低價格、高性能的特點。

2. 2 系統(tǒng)硬件結(jié)構(gòu)設(shè)計

平臺控制板的ARM 處理器采用LPC2294,其驅(qū)動電路由SGS 公司推出的L297 和L298 集成芯片組合而成,驅(qū)動電路原理圖如圖3 所示。平臺控制板還通過串口與磁羅盤和GPS 相連,用于采集所需的數(shù)據(jù)信息。

顯示控制單元仍然采用ARM 芯片LPC2294,它同時與鍵盤和液晶顯示器相連,見圖2。鍵盤用來輸入己方和對方的坐標以及對平臺系統(tǒng)控制命令的輸入,液晶顯示屏可顯示站點坐標、電平信號強度和平臺工作狀態(tài)等,從而構(gòu)造一個友好的人機交互界面。顯示控制單元通過50 m 的電纜與平臺系統(tǒng)相連,通過CAN 接口與平臺控制板通信,當用戶完成設(shè)置時通過CAN 接口將設(shè)置信息發(fā)送到平臺控制器,同時顯示控制單元還作為整套毫米波設(shè)備的基帶控制單元的處理中心。

圖3 步進電機控制驅(qū)動器原理圖

3 軟件設(shè)計

由于系統(tǒng)功能復雜,為了增加程序功能,減少死機或者程序跑飛等情況,故考慮將uC/ OS-Ⅱ嵌人式實時多任務(wù)操作系統(tǒng)作為應(yīng)用軟件平臺,把各個系統(tǒng)功能劃分為不同的任務(wù)。由操作系統(tǒng)來完成任務(wù)的調(diào)度以及任務(wù)之間的同步和通信,用中斷來處理實時性要求強的異步事件。

3. 1 uC/ OS-Ⅱ的移植

uC/ OS-Ⅱ是一種可移植、可固化、可裁剪及可剝奪的實時多任務(wù)內(nèi)核( RTOS), 其絕大部分源碼是用ANSI 的C 語言編寫,可以方便地移植并支持多種類型的處理器。uC/ OS-Ⅱ的硬實時性以及低成本、易控制、小規(guī)模、高性能的特性,使其能滿足工業(yè)中小型控制對可靠性、實時性以及多任務(wù)處理的要求。

編寫應(yīng)用軟件首先要移植uC/ OS-Ⅱ,移植對處理器有一定的要求。本設(shè)計采用的LPC2294 處理器以及開發(fā)工具ADS 1. 2 完全滿足移植要求,可以進行移植。關(guān)于uC/ OS-Ⅱ移植的參考資料比較多,本文不再做詳細討論。

3. 2 任務(wù)的劃分與優(yōu)先級的確定

uC/ OS-Ⅱ?qū)儆趽屨际綄崟r操作系統(tǒng),總是會使處于就緒狀態(tài)中優(yōu)先級最高的任務(wù)運行。它不支持時間片輪轉(zhuǎn)調(diào)度,所以必須將系統(tǒng)功能合理分解為不同優(yōu)先級的任務(wù)。任務(wù)的優(yōu)先級由任務(wù)的重要性和實時性要求程度決定。劃分系統(tǒng)任務(wù)的時候,還要考慮到低優(yōu)先級的任務(wù)能有機會得到運行,否則系統(tǒng)將難以正常工作。因此建立六個任務(wù)進行調(diào)度,任務(wù)之間的通信方式及流程如圖4 所示,分別如下:

TaskMotorCt l:任務(wù)0,作為程序的主任務(wù),實現(xiàn)初始化和電機控制功能;TaskCal:任務(wù)1,在電機轉(zhuǎn)動過程中實時計算轉(zhuǎn)動角度等相關(guān)參數(shù);TaskPortScan:任務(wù)2,端口掃描任務(wù),實現(xiàn)限位開關(guān)端口電平的監(jiān)控功能;TaskU ART0Recv:任務(wù)3,串口0 磁羅盤數(shù)據(jù)的接收處理任務(wù);TaskU ART 1Recv:任務(wù)4,串口1GPS 數(shù)據(jù)的接收處理任務(wù);TaskCAN:任務(wù)5,CAN 接口數(shù)據(jù)收發(fā)處理。

圖4 任務(wù)之間關(guān)系及通信方式

運行時有兩種狀態(tài):

( 1) 靜止狀態(tài)

首先系統(tǒng)啟動之后,進行初始化,然后等待磁羅盤接收信號有效,否則不能進入電機控制任務(wù)。在自動運行狀態(tài),此時平臺處于靜止狀態(tài),程序?qū)邮盏降拇跀?shù)據(jù)進行計算處理后實時更新,并不停地向顯示控制單元匯報天線與目標指向的夾角大小。

( 2) 運動狀態(tài)

當有按鍵按下,顯示控制單元通過中斷的方式對其進行處理,然后通過CAN 總線向平臺控制板發(fā)送控制命令。平臺控制板根據(jù)控制命令確定轉(zhuǎn)動方向并在轉(zhuǎn)動過程中實時監(jiān)測是否碰到限位開關(guān)。

優(yōu)先級的劃分如下:TaskPortScan 優(yōu)先級最高,因為平臺的對準可能會順時針或者逆時針連續(xù)轉(zhuǎn)動,而限位開關(guān)能夠使平臺往某個方向的轉(zhuǎn)動累計不超過一圈,以免引起平臺內(nèi)線的纏繞甚至扯斷。因此當平臺轉(zhuǎn)動碰到限位開關(guān)時,優(yōu)先級最高,以實時響應(yīng)斷電,并使平臺反轉(zhuǎn),這里通過查詢方式來檢測是否碰到限位開關(guān)。

然后就是任務(wù)TaskUART0Recv,在轉(zhuǎn)動過程中都需要實時用到航向和俯仰等角度信息,因此實時準確地接收到此類信息顯得非常重要。因為 TaskCAN 用于接收顯示控制單元的控制命令,排在任務(wù)TaskUART0Recv后面。角度計算任務(wù)的優(yōu)先級排在任務(wù)TaskCAN 的后面,根據(jù)任務(wù)TaskU ART 0Recv 傳下來的角度原始數(shù)據(jù)以及其他相關(guān)信息,實時計算角度值,以確定平臺轉(zhuǎn)動的目標位置。雖然TaskMotorCtl 步進電機的控制任務(wù)重要,但是幾乎全天候運行,如果優(yōu)先級較高,會占用很多資源,導致其他任務(wù)無法進行,所以將其優(yōu)先級排在靠后。最后是 TaskUART1Recv 任務(wù),因為一般本方位置在實際對準中不會變化,所以其經(jīng)緯度數(shù)據(jù)只需接收一次,其優(yōu)先級排在最后。

3. 3 應(yīng)用程序流程

利用LPC2294 系列的帶操作系統(tǒng)的專用工程模板可大大減輕編程負擔。模板包括LPC2294 系列微控制器的啟動文件、頭文件、分散加載描述文件等,利用這些文件,應(yīng)用程序的編寫就變得非常簡單。應(yīng)用程序流程如圖5 所示。

圖5 應(yīng)用程序流程圖

步進電機穩(wěn)定工作時測得的控制脈沖信號波形如圖6 所示。

圖6 示波器輸出波形

4 結(jié) 語

根據(jù)毫米波通信設(shè)備的特點,創(chuàng)造性地設(shè)計了一個以毫米波天線自動對準平臺系統(tǒng)為應(yīng)用目標的基于ARM 微處理器LPC2294 的嵌入式實時控制系統(tǒng)。應(yīng)用ARM 處理器豐富的片內(nèi)外設(shè)和優(yōu)越的性能提高了平臺系統(tǒng)的對準精度和響應(yīng)時間,利用 uC/ OS-Ⅱ提高系統(tǒng)的安全性和可靠性,簡化多任務(wù)程序的設(shè)計。本自動對準平臺系統(tǒng)已經(jīng)應(yīng)用于毫米波通信設(shè)備的樣機對通通信中,進行了多次外場試驗驗證,系統(tǒng)運轉(zhuǎn)平穩(wěn),對準精度高,架設(shè)時間短,從而大大縮短了毫米波通信設(shè)備的對準時間,獲得用戶的好*。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。