《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 解決方案 > 個(gè)人導(dǎo)航儀中的MEMS壓力傳感器

個(gè)人導(dǎo)航儀中的MEMS壓力傳感器

2011-03-09
作者:意法半導(dǎo)體
關(guān)鍵詞: 導(dǎo)航儀 MEMS 壓力傳感器 GPS

作者:Jay Esfandyari1, Massimo Mascotto, Gang Xu

1意法半導(dǎo)體

摘要

     隨著MEMS傳感器的設(shè)計(jì)和制造工藝的進(jìn)步,MEMS壓力傳感器被廣泛用于醫(yī)療、汽車和消費(fèi)電子等應(yīng)用領(lǐng)域。例如,壓力傳感器可用于監(jiān)測(cè)血壓,汽車廠商利用氣壓傳感器優(yōu)化發(fā)動(dòng)機(jī)能效,提醒駕駛員輪胎氣壓不足。

    最近幾年,隨著MEMS壓力傳感器的性能不斷提高,成本和尺寸不斷降低,消費(fèi)電子廠商開(kāi)始使用壓力傳感器與慣性傳感器和地磁傳感器模組實(shí)現(xiàn)航位推測(cè)和導(dǎo)航功能。 

    本文論述如何在個(gè)人導(dǎo)航儀內(nèi)利用MEMS壓力傳感器輔助GPS接收器測(cè)量海拔高度。本文第一部分概述大氣壓與海拔高度的關(guān)系。第二部門描述如何使用壓力傳感器計(jì)算海拔高度。第三部分介紹如何在一個(gè)個(gè)人導(dǎo)航儀如智能手機(jī)內(nèi)集成壓力傳感器。

1.大氣壓與海拔高度的關(guān)系

    在個(gè)人導(dǎo)航儀中,MEMS壓力傳感器充當(dāng)氣壓計(jì)用于測(cè)量海拔高度變化。因此,我們必須了解不同高度的大氣壓。

下面是大氣壓測(cè)量單位:

  • psi – 磅/平方英寸
  • cm/Hg – 水銀柱高(厘米)
  • cm/Hg – 水銀柱高(英寸)
  • Pa – 帕,國(guó)際制壓力單位(SI) ,1Pa = 1 N/m2
  • bar – 巴,氣壓?jiǎn)挝唬? bar = 105Pa
  • mbar – 毫巴,1mbar = 10-3 bar

    我們居住在地球大氣層的底層,大氣壓隨著海拔高度上升而降低。我們將在59 ℉時(shí)的29.92 in/Hg海平面氣壓規(guī)定為標(biāo)準(zhǔn)大氣壓,這個(gè)平均值不受時(shí)間影響,而受到測(cè)量點(diǎn)的地理位置、氣溫和氣流的影響。

     因此,上述壓力單位之間的換算關(guān)系是:

       1 個(gè)標(biāo)準(zhǔn)大氣壓= 14.7 psi = 76 cm/Hg = 29.92 in/Hg = 1.01325 bar = 1013.25 mbar

可以用下面的表達(dá)式表示大氣壓與海拔高度之間關(guān)系[1]:

                                             

其中:

       P0 是標(biāo)準(zhǔn)大氣壓,等于1013.25 mbar;

       Altitude是以米為單位的海拔高度。

       P是在某一高度的以mbar為單位的氣壓

圖1根據(jù)上面的公式描述了大氣壓變化與海拔高度的關(guān)系。

       如圖1所示,當(dāng)高度從海平面上升到海拔11,000米高時(shí),大氣壓從1013.25 mbar降到230 mbar。我們從圖中不難看出,當(dāng)高度低于1,500米時(shí),大氣壓幾乎呈線性降低,每100米大約降低11.2 mbar,即每10米大約降低1.1 mbar。為了取得更精確的高度測(cè)量數(shù)據(jù),可以在目標(biāo)應(yīng)用中構(gòu)建一個(gè)大氣壓高度查詢表,根據(jù)壓力傳感器的測(cè)量結(jié)果,確定對(duì)應(yīng)的海拔高度。

        如果使用全量程為300 mbar到1100 mbar的絕對(duì)MEMS壓力傳感器,測(cè)量高度可達(dá)海拔9,165米到海平面以下698米。

1:       大氣壓與海拔高度的關(guān)系

2. 利用MEMS傳感器確定樓層

    0.1 mbar rms的測(cè)量分辨率使MEMS壓力傳感器能夠發(fā)現(xiàn)在1米以內(nèi)高度變化。因此,在高層建筑內(nèi),可以使用壓力傳感器發(fā)現(xiàn)樓層變化。

    圖2所示是在意法半導(dǎo)體的意大利Castelletto寫字樓內(nèi)采集到的壓力傳感器數(shù)據(jù)。采樣速率是7Hz,數(shù)據(jù)采集時(shí)間總計(jì)大約23分鐘。從圖中我們可以清晰地看到大氣壓在不同樓層的變化。大氣壓在地下室最高。隨著樓層升高,大氣壓逐漸降低。

     圖3所示是意法半導(dǎo)體的一個(gè)MEMS壓力傳感器,這是一個(gè)采用3 x 5 x 1mm LGA-8封裝的數(shù)字輸出壓力傳感器,內(nèi)置I2C/SPI接口和16位數(shù)據(jù)輸出。量程是300 mbar到1100 mbar,分辨率為0.1mbar。該芯片還內(nèi)置溫度傳感器。芯片內(nèi)部控制寄存器可以指示測(cè)量結(jié)果是高于還是低于壓力極限預(yù)設(shè)值。

  壓力傳感器的測(cè)量精度會(huì)受到氣流和天氣條件的影響。為了取得精確、可靠的樓層測(cè)量結(jié)果,需要為壓力傳感器開(kāi)發(fā)校準(zhǔn)和濾波算法。 

圖2:       從意法半導(dǎo)體傳感器原始數(shù)據(jù)取得的樓層檢測(cè)結(jié)果

圖3:       意法半導(dǎo)體的MEMS壓力傳感器

 

3.  在個(gè)人導(dǎo)航儀中使用MEMS壓力傳感器

在當(dāng)前市面上銷售的智能手機(jī)中,大多數(shù)都內(nèi)置了GPS接收器和低成本的MEMS運(yùn)動(dòng)傳感器,例如,加速度計(jì)、陀螺儀和/或磁力計(jì)。在沒(méi)有GPS衛(wèi)星信號(hào)的建筑物內(nèi)或GPS信號(hào)很弱的高樓林立的大都市內(nèi),個(gè)人導(dǎo)航或航位推測(cè)對(duì)于導(dǎo)航變得非常重要。鑒于GPS接收器在戶內(nèi)戶外測(cè)量高度都不夠精確,在智能手機(jī)內(nèi)集成壓力傳感器可以輔助GPS測(cè)量高度。

個(gè)人導(dǎo)航系統(tǒng)(PNS)與個(gè)人航位推測(cè)(PDR)系統(tǒng)相似。從基本原理看,當(dāng)無(wú)法獲得GPS衛(wèi)星信號(hào)時(shí),PNS或PDR可以在智能手機(jī)的電子地圖上繼續(xù)提供方位和前進(jìn)信息,引導(dǎo)用戶到達(dá)興趣點(diǎn),獲得位置關(guān)聯(lián)服務(wù)(LBS)。

前進(jìn)信息可以來(lái)自磁力計(jì)或陀螺儀或兩者的模組。PNS是利用慣性導(dǎo)航原理(INS)對(duì)加速度計(jì)的測(cè)量值進(jìn)行雙重積分求解決方位信息,而PDR是計(jì)步器和步長(zhǎng)估算器根據(jù)典型計(jì)步器原理計(jì)算加速度計(jì)提供的測(cè)量數(shù)據(jù)而獲得的方位信息。在一定時(shí)間內(nèi)獲得前進(jìn)方向和行進(jìn)路程的信息后,導(dǎo)航系統(tǒng)在智能手機(jī)的電子地圖上更新行人在戶內(nèi)的方位。

3.1      PNS或PDR結(jié)構(gòu)示意圖

圖4所示是PNS或PDR的結(jié)構(gòu)示意圖。從傳感器角度看,該系統(tǒng)包括一個(gè)3軸加速度計(jì)、一個(gè)3軸陀螺儀、一個(gè)3軸磁力計(jì)和一個(gè)壓力傳感器。此外,在這個(gè)示意圖內(nèi)還有一個(gè)GPS接收器和一個(gè)主處理器。主處理器用于采集傳感器數(shù)據(jù),運(yùn)行航位推測(cè)算法和卡爾曼濾波算法。

圖4:       PNS或PDR結(jié)構(gòu)示意圖

圖4中每個(gè)組件的優(yōu)缺點(diǎn)歸納如下:

  • GPS接收器:
    • 優(yōu)點(diǎn):GPS可以提供進(jìn)入建筑物前的初始方位;檢索地球偏轉(zhuǎn)角信息,根據(jù)地理前進(jìn)方向修正磁力計(jì)前進(jìn)方向;當(dāng)GPS信號(hào)增強(qiáng)時(shí)校準(zhǔn)計(jì)數(shù)器步長(zhǎng);分別向慣性導(dǎo)航系統(tǒng)的松耦合和緊耦合卡爾曼濾波算法提供有界的精確方位信息(經(jīng)緯度)輸出和偽距原始測(cè)量輸出。
    • 缺點(diǎn):當(dāng)行人保持靜止時(shí),GPS無(wú)法確定前進(jìn)方向;無(wú)法檢測(cè)高度(海拔高度)的細(xì)微變化。
  • 加速度計(jì):
    • 優(yōu)點(diǎn):在靜態(tài)或慢速運(yùn)動(dòng)狀態(tài)下可用于傾斜度修正型數(shù)字羅盤;在線性加速度狀態(tài)下可用于計(jì)步器的檢測(cè)功能;用于檢測(cè)步行人當(dāng)前的狀態(tài)是靜止還是運(yùn)動(dòng)。
    • 缺點(diǎn):當(dāng)智能手機(jī)旋轉(zhuǎn)時(shí),無(wú)法從地球重力組分中區(qū)別真正的線性加速度;對(duì)震動(dòng)和振蕩過(guò)于敏感
  • 陀螺儀:
    • 優(yōu)點(diǎn):能夠向慣性導(dǎo)航系統(tǒng)連續(xù)提供旋轉(zhuǎn)矩陣;當(dāng)磁力計(jì)受到干擾時(shí),輔助數(shù)字羅盤計(jì)算前進(jìn)方向信息
    • 缺點(diǎn):長(zhǎng)時(shí)間的零偏漂移導(dǎo)致無(wú)限的INS定位錯(cuò)誤。

 

  • 磁力計(jì):
    • 優(yōu)點(diǎn):能夠根據(jù)地磁北極計(jì)算精確的前進(jìn)方向;能夠用于校準(zhǔn)陀螺儀的靈敏度。
    • 缺點(diǎn):容易受到環(huán)境磁場(chǎng)干擾
  • 壓力傳感器:
    • 優(yōu)點(diǎn):在室內(nèi)導(dǎo)航應(yīng)用中可區(qū)分樓層;當(dāng)GPS衛(wèi)星信號(hào)較弱時(shí),可輔助GPS計(jì)算高度,提高定位精確度;
    • 缺點(diǎn):容易受到氣流和天氣狀況的影響。

3.2      PNS或PDR的實(shí)現(xiàn)方式

      有兩種方法可以在智能手機(jī)上實(shí)現(xiàn)PNS或PDR導(dǎo)航。第一種方法是利用捷聯(lián)式慣性導(dǎo)航系統(tǒng)(SINS)實(shí)現(xiàn)PNS;第二種方法是利用計(jì)步器方法實(shí)現(xiàn)PDR。這兩種方法都有各自的優(yōu)點(diǎn)和缺點(diǎn)。

    捷聯(lián)慣導(dǎo)系統(tǒng)是基于一個(gè)3軸加速度計(jì)和一個(gè)3軸陀螺儀的6自由度(DOF)慣性測(cè)量單元。捷聯(lián)慣導(dǎo)系統(tǒng)被成功用于外殼剛性很強(qiáng)的設(shè)備內(nèi),例如,慣性測(cè)量單元被永久性安裝在汽車和導(dǎo)彈內(nèi)。該系統(tǒng)在短時(shí)間內(nèi)的定位精度相對(duì)較高。因?yàn)榈统杀綧EMS運(yùn)動(dòng)傳感器的零偏漂移問(wèn)題,當(dāng)沒(méi)有GPS衛(wèi)星信號(hào)時(shí),經(jīng)過(guò)積分和二重積分運(yùn)算后,定位誤差會(huì)隨時(shí)間推移而變大。此外,行人通常把智能手機(jī)放在衣袋或掛在腰帶上,他們隨時(shí)都會(huì)從衣袋里或腰帶上取出手機(jī)查看當(dāng)前所在方位。這就是說(shuō),智能手機(jī)與用戶身體的相對(duì)位置不固定。

    不過(guò),SINS/GPS集成化PNS系統(tǒng)的優(yōu)點(diǎn)是定位與用戶無(wú)關(guān),這就是說(shuō),所有用戶無(wú)需給智能手機(jī)建?;蛴?xùn)練智能手機(jī),以適應(yīng)不同類型的行人的動(dòng)作,例如,步行、跑步和上下樓梯等。

    計(jì)步器/GPS集成化PDR系統(tǒng)的優(yōu)點(diǎn)是定位精度主要取決于加速度計(jì)計(jì)步和GPS步長(zhǎng)估算,定位誤差始終是有限的[2]。

    PDR的第一步是使用加速度計(jì)精確檢測(cè)腳步[3]。這個(gè)過(guò)程的基本原理是,智能手機(jī)在行人的腰帶后部無(wú)論如何放置,都能自動(dòng)發(fā)現(xiàn)垂直主軸;然后,將加速度測(cè)量數(shù)據(jù)與第一個(gè)參考閾值對(duì)比,隨后,參考閾值將根據(jù)不同的運(yùn)動(dòng)類型自動(dòng)更新。因此,加速度計(jì)可以準(zhǔn)確計(jì)算行人步行、跑步和上下樓梯時(shí)的步數(shù)。

    第二步是當(dāng)GPS信號(hào)很強(qiáng)時(shí)校準(zhǔn)步長(zhǎng)。智能手機(jī)計(jì)算行人的平均步長(zhǎng)的方法是,用從GPS開(kāi)始測(cè)量起經(jīng)過(guò)的距離除以上面的計(jì)步器算法得出的步數(shù)。步行人的所有的運(yùn)動(dòng)類型,例如,慢走、快走、慢跑、快跑、上下樓梯等,都需要執(zhí)行步長(zhǎng)校準(zhǔn)步驟。不同的行人有不同的運(yùn)動(dòng)方式。因此,PDR與用戶有關(guān),所有的步行人都需要一個(gè)自動(dòng)校準(zhǔn)或自我訓(xùn)練的步長(zhǎng)估算算法。

    第三步是整合加速度計(jì)、陀螺儀、磁力計(jì)和GPS接收器的數(shù)據(jù)求解精確的前進(jìn)信息。在估算完步長(zhǎng)后,求解航位推測(cè)應(yīng)用的另一個(gè)關(guān)鍵參數(shù):以地球北極為參考點(diǎn)的絕對(duì)前進(jìn)方向。在一個(gè)無(wú)磁場(chǎng)干擾的環(huán)境內(nèi),加速度計(jì)和磁力計(jì)測(cè)量結(jié)果產(chǎn)生的傾斜度修正的數(shù)字羅盤能夠提供以地球北極為參照點(diǎn)的精確的前進(jìn)方向。

     在進(jìn)入建筑物前,GPS定位信息能夠根據(jù)位置檢索傾斜角,然后,把羅盤提供的前進(jìn)方向數(shù)據(jù)轉(zhuǎn)化成地理前進(jìn)方向信息。如果周圍環(huán)境沒(méi)有干擾磁場(chǎng),可以利用磁力計(jì)的測(cè)量數(shù)值提取前進(jìn)方向信息。如果發(fā)現(xiàn)干擾磁場(chǎng),陀螺儀將接替磁力計(jì)的工作,在上一次無(wú)干擾的羅盤前進(jìn)信號(hào)輸出基礎(chǔ)上提供連續(xù)的前進(jìn)信息輸出。

     一旦發(fā)現(xiàn)外界磁場(chǎng)干擾消失,陀螺儀將立即停止運(yùn)行,羅盤將接替陀螺儀恢復(fù)運(yùn)轉(zhuǎn)。這個(gè)過(guò)程被稱之為陀螺儀輔助數(shù)字羅盤。當(dāng)智能手機(jī)是靜止?fàn)顟B(tài)時(shí),加速度計(jì)就會(huì)讓陀螺儀定期更新零角速率電平以備將來(lái)使用

     第四步是從壓力傳感器和GPS接收器獲得精確的高度信息。當(dāng)行人在購(gòu)物中心乘坐電梯或登樓梯時(shí),壓力傳感器會(huì)更新數(shù)字地圖,顯示行人當(dāng)前所在樓層。壓力傳感器還能利用卡爾曼濾波器濾除加速度計(jì)的Z軸漂移。 

     第五步是開(kāi)發(fā)卡爾曼濾波算法,合并10-D傳感器模組數(shù)據(jù)與GPS數(shù)據(jù)。所有的GPS接收器都有1個(gè)PPS (脈沖/秒)輸出信號(hào),使GPS與傳感器的數(shù)據(jù)傳輸同步,傳感器的采樣速率可以更快,例如50Hz或100Hz。當(dāng)能夠收到GPS衛(wèi)星信號(hào)時(shí),卡爾曼濾波器將使用GPS輸出數(shù)據(jù)計(jì)算導(dǎo)航信息;相反,當(dāng)GPS衛(wèi)星信號(hào)被屏蔽時(shí),則使用航位推測(cè)算法輸出的數(shù)據(jù)。當(dāng)GPS信號(hào)恢復(fù)時(shí),該濾波器還能估算需要修正的傳感器誤差。

      最后一步是在智能手機(jī)上測(cè)試PDR的性能。對(duì)于消費(fèi)電子產(chǎn)品,5%的行進(jìn)距離誤差通常是可以接受的。例如,當(dāng)一個(gè)人在室內(nèi)走過(guò)100米的距離時(shí),定位誤差應(yīng)該在5米范圍內(nèi)。

4.  結(jié)論

    MEMS技術(shù)和制程的發(fā)展進(jìn)步產(chǎn)生了低成本、高性能的MEMS加速度計(jì)、陀螺儀和壓力傳感器。隨著尺寸越來(lái)越小,功耗越來(lái)越低,這些產(chǎn)品開(kāi)始在智能手機(jī)等手持產(chǎn)品上演繹令人震撼的新功能。

     在無(wú)人駕駛飛行器(UAV)導(dǎo)航系統(tǒng)和室內(nèi)PDR應(yīng)用方面,MEMS壓力傳感器正在引起業(yè)界的強(qiáng)烈關(guān)注。隨著先進(jìn)濾波算法研發(fā)的深入,在室內(nèi)實(shí)現(xiàn)5%的距離誤差是切合實(shí)際的。 

5.  參考文獻(xiàn)   

1. U.S. Standard Atmosphere, 1976
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539_1977009539.pdf 
 
2. Honeywell International Inc.
Dead Reckoning for Consumer Electronics
http://www.magneticsensors.com/datasheets/Dead_Reckoning_Consumer_Electronics.pdf   
 
3. STMicroelectronics, Inc.
Fabio Pasolini et al,  
“Pedometer device and step detection method using an algorithm for self-adaptive computation of acceleration thresholds”; United States Patent 7463997:
 

DOF     –     自由度

GPS      –     全球定位系統(tǒng)

IMU       –     慣性測(cè)量單元

INS      –     慣性導(dǎo)航系統(tǒng)

LBS      –     位置關(guān)聯(lián)服務(wù)

MEMS  –     微機(jī)電系統(tǒng)

PDR     –     個(gè)人航位推測(cè)

PNS     –     個(gè)人導(dǎo)航系統(tǒng)

PPS     –     脈沖/秒

SINS    –     捷聯(lián)慣性導(dǎo)航系統(tǒng)

UAV    –     無(wú)人駕駛飛行器

LGA     –     格柵陣列封裝

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。