| 基于黑盒测试框架的深度学习模型版权保护方法 | |
| 所屬分類:技术论文 | |
| 上傳者:wwei | |
| 文檔大?。?span>1029 K | |
| 標(biāo)簽: 生成式人工智能 深度学习模型 版权保护 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:当前生成式人工智能技术迅速发展,深度学习模型作为关键技术资产的版权保护变得越发重要。现有模型版权保护方法一般采用确定性测试样本生成算法,存在选择效率低和对抗攻击脆弱的问题。针对上述问题,提出了一种基于黑盒测试框架的深度学习模型版权保护方法。首先引入基于随机性算法的样本生成策略,有效提高了测试效率并降低了对抗攻击的风险。此外针对黑盒场景,引入了新的测试指标和算法,增强了黑盒防御的能力,确保每个指标具有足够的正交性。在实验验证方面,所提方法显示出了高效的版权判断准确性和可靠性,有效降低了高相关性指标的数量。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2