基于多尺度注意力融合网络的胃癌病理图像分割方法*
所屬分類(lèi):技术论文
上傳者:zhoubin333
文檔大小:4827 K
標(biāo)簽: 病理图像 图像分割 注意力融合
所需積分:0分積分不夠怎么辦?
文檔介紹:近年来,随着深度学习技术的发展,基于编解码的图像分割方法在病理图像自动化分析上的研究与应用也逐渐广泛,但由于胃癌病灶复杂多变、尺度变化大,加上数字化染色图像时易导致的边界模糊,目前仅从单一尺度设计的分割算法往往无法获得更精准的病灶边界。为优化胃癌病灶图像分割准确度,基于编解码网络结构,提出一种基于多尺度注意力融合网络的胃癌病灶图像分割算法。编码结构以EfficientNet作为特征提取器,在解码器中通过对多路径不同层级的特征进行提取和融合,实现了网络的深监督,在输出时采用空间和通道注意力对多尺度的特征图进行注意力筛选,同时在训练过程中应用综合损失函数来优化模型。实验结果表明,该方法在SEED数据集上Dice系数得分达到0.806 9,相比FCN和UNet系列网络一定程度上实现了更精细化的胃癌病灶分割。
現(xiàn)在下載
VIP會(huì)員,AET專(zhuān)家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。