《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 设计应用 > 基于改进U-Net的沥青拌合站混合料装车语义分割
基于改进U-Net的沥青拌合站混合料装车语义分割
电子技术应用
李东丽1,成高立1,郭涛2,夏晓华2
1.陕西高速机械化工程有限公司; 2.长安大学 道路施工技术与装备教育部重点实验室
摘要: 针对现有的沥青拌合站混合料装车语义分割方法平均交并比(Mean Intersection over Union,mIoU)值较低、检测速度较慢等问题,提出一种轻量化网络RCS-UNet对沥青拌合站混合料装车状态进行语义分割。首先在U-Net网络中加入残差连接以缓解梯度消失的问题,使网络在训练过程中更加稳定,提高模型的收敛速度和泛化能力;其次加入坐标注意力(Coordinate Attention,CA)机制,增强位置与通道的信息感知,提高模型的特征提取能力,使模型更加关注图像中的重要区域;最后将U-Net网络中的标准卷积修改为深度可分离卷积,以减小模型的体积和参数量,使得模型在保持较高性能的同时,具有更低的资源消耗和更快的推理速度。实验结果表明,改进模型的准确率、mIoU值以及FPS值分别为99.20%、98.41%和22.98,与经典模型和当前先进模型相比三个指标均为最高,取得了最优的语义分割效果。
中圖分類號(hào):U415 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245955
中文引用格式: 李東麗,成高立,郭濤,等. 基于改進(jìn)U-Net的瀝青拌合站混合料裝車語義分割[J]. 電子技術(shù)應(yīng)用,2025,51(4):29-34.
英文引用格式: Li Dongli,Cheng Gaoli,Guo Tao,et al. Semantic segmentation of mix loading at asphalt mixing plant based on improved U-Net[J]. Application of Electronic Technique,2025,51(4):29-34.
Semantic segmentation of mix loading at asphalt mixing plant based on improved U-Net
Li Dongli1,Cheng Gaoli1,Guo Tao2,Xia Xiaohua2
1.Shaanxi Expressway Mechanization Engineering Limited Company; 2.Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University
Abstract: Aiming at the existing asphalt mixing plant mixture loading semantic segmentation methods with low Mean Intersection over Union(mIoU) values and slow detection speed, a lightweight network RCS-UNet is proposed for semantic segmentation of asphalt mixing plant mixture loading state.Firstly, residual connections are integrated into the U-Net network to mitigate the gradient vanishing issue, promoting stability during training, enhancing convergence speed, and improving generalization abilities. Secondly, the Coordinate Attention(CA) mechanism is incorporated to boost the perception of positional and channel information, refining feature extraction and enabling a sharper focus on critical regions within the image. Finally, the standard convolution in the U-Net network is modified to depth-separable convolution in order to reduce the size and parameters of the model, so that the model has a lower resource consumption and a faster inference speed while maintaining a higher performance. The experimental results show that the accuracy, mIoU, and FPS of the improved model are 99.20%, 98.41% and 22.98, respectively, which are the highest compared with the classical model and the current state-of-the-art model. The best segmentation results are obtained.
Key words : residual connectivity;CA;depth-separable convolution;semantic segmentation;asphalt mixing plant

引言

隨著科技的進(jìn)步,工業(yè)領(lǐng)域?qū)τ谥悄芑妥詣?dòng)化的需求日益增強(qiáng)。瀝青拌合站作為道路建設(shè)中的關(guān)鍵設(shè)備[1],其智能化和自動(dòng)化水平的提升對(duì)于提高道路建設(shè)效率、保證建設(shè)質(zhì)量以及降低運(yùn)營(yíng)成本都具有重要意義。

目前,瀝青拌合站混合料裝車的狀態(tài)主要依靠人工監(jiān)測(cè),這種監(jiān)測(cè)方法不僅效率低下,而且容易出現(xiàn)誤差[2]。此外,工人長(zhǎng)期工作在瀝青煙氣的環(huán)境中,嚴(yán)重影響其身心健康。隨著計(jì)算機(jī)技術(shù)的發(fā)展,基于深度學(xué)習(xí)的語義分割技術(shù)逐漸應(yīng)用到瀝青拌合站混合料裝車的狀態(tài)識(shí)別。Wang等[3]提出了M-DeepLabV3+模型對(duì)瀝青拌合站混合料裝車圖像進(jìn)行語義分割,通過計(jì)算料堆最高點(diǎn)與車輛擋板的高度差判斷車輛是否裝滿,實(shí)現(xiàn)了深度學(xué)習(xí)在瀝青拌合站混合料裝車狀態(tài)識(shí)別上的首次應(yīng)用。李許峰等[4]提出一種輕量級(jí)的語義分割網(wǎng)絡(luò)S-DeepLabV3+,將原DeepLabV3+的主干網(wǎng)絡(luò)Xception替換為ShuffleNetV2,實(shí)現(xiàn)了瀝青拌合站裝車的自動(dòng)化監(jiān)測(cè)。以上方法雖然對(duì)瀝青拌合站混合料裝車狀態(tài)的智能識(shí)別做出了貢獻(xiàn),但都存在語義分割mIoU值較低、檢測(cè)速度較慢等問題。

針對(duì)上述問題,本文對(duì)U-Net[5]模型進(jìn)行改進(jìn),提出了一種輕量化模型RCS-UNet。首先在U-Net網(wǎng)絡(luò)中加入殘差連接[6]以緩解梯度消失的問題,其次加入CA注意力機(jī)制[7]提高模型的特征提取能力,最后將U-Net網(wǎng)絡(luò)中的標(biāo)準(zhǔn)卷積修改為深度可分離卷積[8]以減小模型體積,提高模型的檢測(cè)速度。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000006390


作者信息:

李東麗1,成高立1,郭濤2,夏曉華2

(1.陜西高速機(jī)械化工程有限公司,陜西 西安 710038;

2.長(zhǎng)安大學(xué) 道路施工技術(shù)與裝備教育部重點(diǎn)實(shí)驗(yàn)室,陜西 西安710064)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容