《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于改進(jìn)AOD-Net的圖像去霧算法
基于改進(jìn)AOD-Net的圖像去霧算法
電子技術(shù)應(yīng)用
侯明,梁文杰
昆明理工大學(xué) 信息工程與自動(dòng)化學(xué)院
摘要: 為了更好解決圖像去霧后顏色失真、去霧不徹底和耗時(shí)等問(wèn)題,提出了一種基于改進(jìn)AOD-Net的圖像去霧算法。首先,在原有的卷積模塊中引入殘差連接,并保留了第二個(gè)特征融合層第一層的特征信息,以增強(qiáng)網(wǎng)絡(luò)的特征提取能力。其次,在第三個(gè)特征融合層后引入注意力模塊,強(qiáng)化霧圖中的關(guān)鍵特征信息,抑制無(wú)關(guān)背景干擾。最后,采用新的復(fù)合損失函數(shù)進(jìn)行訓(xùn)練。實(shí)驗(yàn)結(jié)果表明,改進(jìn)算法在公共數(shù)據(jù)集上的峰值信噪比提高了3.8 dB,結(jié)構(gòu)相似性達(dá)到了93.6%。相較于其他去霧算法,該算法在去霧精度和處理效率方面均表現(xiàn)出色。
中圖分類(lèi)號(hào):TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.244857
中文引用格式: 侯明,梁文杰. 基于改進(jìn)AOD-Net的圖像去霧算法[J]. 電子技術(shù)應(yīng)用,2024,50(4):60-66.
英文引用格式: Hou Ming,Liang Wenjie. Image defogging algorithm based on improved AOD-Net[J]. Application of Electronic Technique,2024,50(4):60-66.
Image defogging algorithm based on improved AOD-Net
Hou Ming,Liang Wenjie
Faculty of Information Engineering and Automation, Kunming University of Science and Technology
Abstract: To address issues such as color distortion, incomplete defogging, and computational inefficiency in image defogging, this study proposes an improved image defogging algorithm based on the enhanced AOD-Net. Initially, a residual connection is introduced into the existing convolutional module, preserving the features of the first layer in the second feature fusion layer to enhance feature extraction capabilities. Subsequently, an attention module is introduced after the third feature fusion layer to strengthen the representation of crucial features in hazy images and suppress irrelevant background interference. Finally, a novel composite loss function is employed for training. Experimental results demonstrate that the proposed algorithm achieves a 3.8 dB improvement in Peak Signal-to-Noise Ratio (PSNR) and a structural similarity (SSIM) of 93.6% on a public dataset. Compared to other defogging algorithms, this algorithm exhibits superior performance in both defogging accuracy and processing efficiency.
Key words : image defogging;AOD-Net;residual connection;attention module;composite loss function

引言

霧霾是由于工業(yè)生產(chǎn)、交通運(yùn)輸和能源消耗等活動(dòng)排放大量污染物,積聚在大氣中形成的一種惡劣天氣狀況。隨著計(jì)算機(jī)視覺(jué)的不斷發(fā)展,目標(biāo)檢測(cè)、目標(biāo)跟蹤和遙感等技術(shù)逐漸被應(yīng)用于智能交通和其他工業(yè)領(lǐng)域[1]。然而,在霧霾環(huán)境下,能見(jiàn)度急劇下降,影響了成像設(shè)備拍攝的圖像質(zhì)量,給后續(xù)的高級(jí)視覺(jué)任務(wù)帶來(lái)了困難。因此,提高霧天圖像質(zhì)量對(duì)實(shí)際應(yīng)用至關(guān)重要。

目前的圖像去霧算法主要有3種:基于物理模型、圖像增強(qiáng)和深度學(xué)習(xí)的方法[2]?;谖锢砟P偷娜レF方法試圖模擬光在大氣傳播中與霧霾相互作用的物理過(guò)程,通過(guò)估計(jì)透射率和大氣光值來(lái)還原原始圖像。這類(lèi)方法包括暗通道先驗(yàn)算法[3]和顏色衰減先驗(yàn)算法[4]。這些方法通常利用圖像的先驗(yàn)知識(shí)解決大氣散射模型中的未知參數(shù),但由于其依賴(lài)經(jīng)驗(yàn)統(tǒng)計(jì)規(guī)律,因此其適用場(chǎng)景受限?;趫D像增強(qiáng)的去霧算法旨在提高帶霧圖像的可見(jiàn)度和視覺(jué)質(zhì)量,以減輕或消除霧霾對(duì)圖像的不利影響。這類(lèi)方法包括直方圖均衡化、Retinex算法等,它們不依賴(lài)于物理模型,而是利用圖像的統(tǒng)計(jì)信息和視覺(jué)特征,然而,在去霧過(guò)程中可能會(huì)產(chǎn)生偽影,過(guò)度增強(qiáng)對(duì)比度導(dǎo)致圖像不真實(shí)。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000005950


作者信息:

侯明,梁文杰

(昆明理工大學(xué) 信息工程與自動(dòng)化學(xué)院,云南 昆明 650500)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。