基于改进AOD-Net的图像去雾算法
电子技术应用
侯明,梁文杰
昆明理工大学 信息工程与自动化学院
摘要: 为了更好解决图像去雾后颜色失真、去雾不彻底和耗时等问题,提出了一种基于改进AOD-Net的图像去雾算法。首先,在原有的卷积模块中引入残差连接,并保留了第二个特征融合层第一层的特征信息,以增强网络的特征提取能力。其次,在第三个特征融合层后引入注意力模块,强化雾图中的关键特征信息,抑制无关背景干扰。最后,采用新的复合损失函数进行训练。实验结果表明,改进算法在公共数据集上的峰值信噪比提高了3.8 dB,结构相似性达到了93.6%。相较于其他去雾算法,该算法在去雾精度和处理效率方面均表现出色。
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.244857
中文引用格式: 侯明,梁文杰. 基于改進AOD-Net的圖像去霧算法[J]. 電子技術(shù)應(yīng)用,2024,50(4):60-66.
英文引用格式: Hou Ming,Liang Wenjie. Image defogging algorithm based on improved AOD-Net[J]. Application of Electronic Technique,2024,50(4):60-66.
中文引用格式: 侯明,梁文杰. 基于改進AOD-Net的圖像去霧算法[J]. 電子技術(shù)應(yīng)用,2024,50(4):60-66.
英文引用格式: Hou Ming,Liang Wenjie. Image defogging algorithm based on improved AOD-Net[J]. Application of Electronic Technique,2024,50(4):60-66.
Image defogging algorithm based on improved AOD-Net
Hou Ming,Liang Wenjie
Faculty of Information Engineering and Automation, Kunming University of Science and Technology
Abstract: To address issues such as color distortion, incomplete defogging, and computational inefficiency in image defogging, this study proposes an improved image defogging algorithm based on the enhanced AOD-Net. Initially, a residual connection is introduced into the existing convolutional module, preserving the features of the first layer in the second feature fusion layer to enhance feature extraction capabilities. Subsequently, an attention module is introduced after the third feature fusion layer to strengthen the representation of crucial features in hazy images and suppress irrelevant background interference. Finally, a novel composite loss function is employed for training. Experimental results demonstrate that the proposed algorithm achieves a 3.8 dB improvement in Peak Signal-to-Noise Ratio (PSNR) and a structural similarity (SSIM) of 93.6% on a public dataset. Compared to other defogging algorithms, this algorithm exhibits superior performance in both defogging accuracy and processing efficiency.
Key words : image defogging;AOD-Net;residual connection;attention module;composite loss function
引言
霧霾是由于工業(yè)生產(chǎn)、交通運輸和能源消耗等活動排放大量污染物,積聚在大氣中形成的一種惡劣天氣狀況。隨著計算機視覺的不斷發(fā)展,目標(biāo)檢測、目標(biāo)跟蹤和遙感等技術(shù)逐漸被應(yīng)用于智能交通和其他工業(yè)領(lǐng)域[1]。然而,在霧霾環(huán)境下,能見度急劇下降,影響了成像設(shè)備拍攝的圖像質(zhì)量,給后續(xù)的高級視覺任務(wù)帶來了困難。因此,提高霧天圖像質(zhì)量對實際應(yīng)用至關(guān)重要。
目前的圖像去霧算法主要有3種:基于物理模型、圖像增強和深度學(xué)習(xí)的方法[2]。基于物理模型的去霧方法試圖模擬光在大氣傳播中與霧霾相互作用的物理過程,通過估計透射率和大氣光值來還原原始圖像。這類方法包括暗通道先驗算法[3]和顏色衰減先驗算法[4]。這些方法通常利用圖像的先驗知識解決大氣散射模型中的未知參數(shù),但由于其依賴經(jīng)驗統(tǒng)計規(guī)律,因此其適用場景受限?;趫D像增強的去霧算法旨在提高帶霧圖像的可見度和視覺質(zhì)量,以減輕或消除霧霾對圖像的不利影響。這類方法包括直方圖均衡化、Retinex算法等,它們不依賴于物理模型,而是利用圖像的統(tǒng)計信息和視覺特征,然而,在去霧過程中可能會產(chǎn)生偽影,過度增強對比度導(dǎo)致圖像不真實。
本文詳細(xì)內(nèi)容請下載:
http://ihrv.cn/resource/share/2000005950
作者信息:
侯明,梁文杰
(昆明理工大學(xué) 信息工程與自動化學(xué)院,云南 昆明 650500)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
