Beijing Institute of Computer Technology and Application
Abstract: The development of emerging technologies has promoted the wide application of intelligent methods such as machine learning in the field of network intrusion detection, and effectively improved the efficiency and accuracy of intrusion detection. However, the field of network intrusion detection based on machine learning still faces challenges such as difficulty in processing large-scale network data, imbalance of data samples, difficulty in effectively detecting unknown threats, and poor generalization ability of models. This paper aims to summarize the network intrusion detection technology based on machine learning, compare and analyze the advantages and limitations of the current mainstream methods, and summarize and discuss the current challenges and future prospects in this field, so as to provide reference for people in this field to understand the latest research trends.
Key words : machine learning; intrusion detection; intelligence