基于改進(jìn)YOLOv8的森林火災(zāi)探測(cè)技術(shù)研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
杜世澤,銀皓,豐大軍,句海洋,劉天龍,李帥蓉,姚云
華北計(jì)算機(jī)系統(tǒng)工程研究所
摘要: 森林火災(zāi)探測(cè)是當(dāng)前的一個(gè)重點(diǎn)研究方向,然而,真實(shí)的森林火災(zāi)場(chǎng)景中存在大量的負(fù)樣本數(shù)據(jù),嚴(yán)重影響目標(biāo)探測(cè)的性能,同時(shí)邊端側(cè)部署需要更加輕量化的模型。針對(duì)這一問(wèn)題,提出了一種改進(jìn)的YOLOv8方法,該方法首先引入EfficientViT模塊到骨干網(wǎng)絡(luò)(Backbone),通過(guò)級(jí)聯(lián)分組注意力模塊,減少計(jì)算開(kāi)銷;然后,在頭部網(wǎng)絡(luò)(Head)中引入CBAM模塊,對(duì)骨干網(wǎng)絡(luò)提取的特征進(jìn)行特征增強(qiáng),同時(shí)抑制噪聲和無(wú)關(guān)信息;最后針對(duì)數(shù)據(jù)集的低質(zhì)量樣本,引入Wise-IoU損失函數(shù),增強(qiáng)數(shù)據(jù)集訓(xùn)練效果。實(shí)驗(yàn)結(jié)果表明,改進(jìn)后的YOLOv8模型對(duì)森林火災(zāi)的檢測(cè)精度達(dá)到79.5%,檢測(cè)速度達(dá)到75 FPS,整個(gè)模型的參數(shù)量降低了5.7%,對(duì)森林火災(zāi)探測(cè)具有重要意義。
中圖分類號(hào):TP391文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2024.10.008
引用格式:杜世澤,銀皓,豐大軍,等.基于改進(jìn)YOLOv8的森林火災(zāi)探測(cè)技術(shù)研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(10):49-56,82.
引用格式:杜世澤,銀皓,豐大軍,等.基于改進(jìn)YOLOv8的森林火災(zāi)探測(cè)技術(shù)研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(10):49-56,82.
Research on forest fire detection technology based on improved YOLOv8
Du Shize,Yin Hao,Feng Dajun,Ju Haiyang,Liu Tianlong,Li Shuairong,Yao Yun
National Computer System Engineering Research Institute of China
Abstract: Forest fire detection is a key research direction at present. However, there are a large number of negative sample data in real forest fire scenarios, which seriously affects the performance of target detection. At the same time, edge to edge deployment requires more lightweight models. To address this issue, this article proposes an improved YOLOv8 method, which firstly introduces the EfficientViT module to the backbone network and reduces computational overhead by cascading group attention modules. Then, the CBAM module is introduced into the head network to enhance the features extracted by the backbone network, while suppressing noise and irrelevant information. Finally, for low-quality samples in the dataset, the Wise-IoU loss function is introduced to enhance the training effect of the dataset. The experimental results show that the improved YOLOv8 model achieves a detection accuracy of 79.5% for forest fires, a detection speed of 75 FPS, and a 5.7% reduction in the parameter count of the entire model, which is of great significance for forest fire detection.
Key words : YOLOv8; forest fire detection; image analysis; EfficientViT; attention mechanism
引言
當(dāng)前受全球氣候極端變化影響,森林火災(zāi)發(fā)生頻繁,在應(yīng)對(duì)森林火災(zāi)防范階段,我國(guó)投入了大量的人力、物力和財(cái)力,通過(guò)無(wú)人機(jī)進(jìn)行森林火災(zāi)巡護(hù)正成為一種主要的研究方向[1]。然而,使用無(wú)人機(jī)獲取的早期林火目標(biāo)尺寸較小,成像距離較遠(yuǎn),缺少紋理特征,因此,在目標(biāo)定位識(shí)別精度上還存在很大缺陷。
本文詳細(xì)內(nèi)容請(qǐng)下載:
http://ihrv.cn/resource/share/2000006196
作者信息:
杜世澤,銀皓,豐大軍,句海洋,劉天龍,李帥蓉,姚云
(華北計(jì)算機(jī)系統(tǒng)工程研究所,北京100083)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。