《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 设计应用 > 一种改进的基于Mask R-CNN的玉米大斑病实例分割算法
一种改进的基于Mask R-CNN的玉米大斑病实例分割算法
电子技术应用
朱宇浩1,童孟军1,2
1.浙江农林大学 数学与计算机科学学院; 2.浙江省林业智能监测与信息技术研究重点实验室
摘要: 玉米作为我国主粮作物,其生产常受大斑病、小斑病、锈病等病害及虫害影响,导致其产量与品质下降,威胁农业生产安全。近年来,视觉检测技术因其高准确性已成为病害防控的重要工具。以Mask R-CNN为基础框架,通过融入DyHead、Groie和OHEM模块进行优化,旨在提升对细微病灶图像的分割效能。改良后的模型在病害图像分割任务上展现出卓越性能,平均精度(mAP)提升4%,尤其在小目标分割上准确率提高8.5%,相较于YOLOv5、YOLACT++等同类模型优势显著。通过消融实验验证了各新增模块的有效性,证实该模型为精准检测玉米大斑病提供了有力的技术支持与理论依据。
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.244871
中文引用格式: 朱宇浩,童孟軍. 一種改進(jìn)的基于Mask R-CNN的玉米大斑病實例分割算法[J]. 電子技術(shù)應(yīng)用,2024,50(5):71-76.
英文引用格式: Zhu Yuhao,Tong Mengjun. An improved Mask R-CNN based instance segmentation algorithm for maize Northern Leaf Blight[J]. Application of Electronic Technique,2024,50(5):71-76.
An improved Mask R-CNN based instance segmentation algorithm for maize Northern Leaf Blight
Zhu Yuhao1,Tong Mengjun1,2
1.College of Mathematics and Computer Science, Zhejiang A&F University;2.Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research
Abstract: Maize, a crucial staple crop in China, is frequently beset by production challenges stemming from diseases such as maize Northern Leaf Blight, Southern Corn Leaf Blight, and rust, along with insect pests. These maladies significantly undermine maize yield and quality, presenting a potential menace to agricultural production stability. In recent times, visual disease detection techniques have emerged as pivotal instruments for disease management, offering heightened precision relative to conventional methods. This paper leverages the Mask R-CNN architecture as its foundation, integrating DyHead, Groie, and OHEM modules to augment the model's proficiency in segmenting images containing minute disease manifestations. The enhanced Mask R-CNN model exhibits outstanding performance in disease image segmentation, witnessing a 4% uplift in mean average precision (mAP) and an 8.5% enhancement in accuracy for small object segmentation. Compared to analogous instance segmentation models like YOLOv5 and YOLACT++, this model displays superior prowess. To substantiate the utility of each incorporated module, ablation studies were carried out, revealing their constructive roles. Thus, this methodology furnishes a sturdy theoretical underpinning and technological means for the efficacious and precise detection of maize Northern Leaf Blight.
Key words : instance segmentation;Northern Leaf Blight;Mask R-CNN;computer vision;attention mechanism

引言

玉米是中國最重要的糧食作物之一,廣泛種植于東北、華北、淮河流域和長江流域[1]。然而,玉米生產(chǎn)經(jīng)常受到各種疾病和害蟲的威脅,其中玉米大斑病[2]是其中一個重要挑戰(zhàn)。玉米大斑病嚴(yán)重影響了玉米的產(chǎn)量和質(zhì)量。特別值得注意的是由于病原體突變導(dǎo)致對許多常用殺菌劑產(chǎn)生不同程度的抗藥性[3],給預(yù)防和控制工作帶來了重大困難。準(zhǔn)確高效的病害檢測技術(shù)對于科學(xué)預(yù)防和控制這些疾病至關(guān)重要。

玉米大斑病(Northern Leaf Blight, NLB)是一種嚴(yán)重的農(nóng)作物病害,可以顯著降低玉米產(chǎn)量,是影響玉米作物經(jīng)濟(jì)最為嚴(yán)重的疾病之一[4]。玉米大斑病的發(fā)生是由真菌侵入引起的,主要影響玉米植株的葉片。在早期階段,受影響的植株在葉片表面呈現(xiàn)水浸狀病斑。這些病斑逐漸向兩端擴(kuò)展,最終演變成灰褐色或褐色斑點(diǎn)。在玉米大斑病的后期階段,這些斑點(diǎn)的形狀轉(zhuǎn)變?yōu)闄E圓形或菱形圖案,長度為6 cm~9 cm,寬度約為1.5 cm[5]。由玉米大斑病引起的病區(qū)通常較大,可以通過攝像機(jī)拍攝的圖像清晰可見。與傳統(tǒng)的人工田間檢查相比,使用攝像機(jī)圖像是監(jiān)測玉米大斑病的有效方法之一。

在現(xiàn)代農(nóng)業(yè)中,基于植物葉片特征的檢測已成為自動植物病害檢測的研究熱點(diǎn)。傳統(tǒng)方法,如概率神經(jīng)網(wǎng)絡(luò)、主成分分析、人工神經(jīng)網(wǎng)絡(luò)和模糊邏輯已應(yīng)用于植物葉片病害的分類。隨著計算機(jī)視覺技術(shù)的進(jìn)步,由于其便利性和高準(zhǔn)確性,深度學(xué)習(xí)越來越多地用于病害檢測。Seetharaman及其同事引入了一種改進(jìn)的R-CNN模型,增強(qiáng)了香蕉葉病檢測的準(zhǔn)確性[6]。


本文詳細(xì)內(nèi)容請下載:

http://ihrv.cn/resource/share/2000005991


作者信息:

朱宇浩1,童孟軍1,2

(1.浙江農(nóng)林大學(xué) 數(shù)學(xué)與計算機(jī)科學(xué)學(xué)院,浙江 杭州 311300;

2.浙江省林業(yè)智能監(jiān)測與信息技術(shù)研究重點(diǎn)實驗室,浙江 杭州 311300)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容