《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 復(fù)雜背景下小尺寸多角度人臉檢測(cè)方法研究
復(fù)雜背景下小尺寸多角度人臉檢測(cè)方法研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
黃杰,劉芬
天津職業(yè)技術(shù)師范大學(xué)電子工程學(xué)院
摘要: 為了提升復(fù)雜背景下小尺寸人臉檢測(cè)精度,提出了一種人臉檢測(cè)方法GhostNet-MTCNN。在多任務(wù)級(jí)聯(lián)卷積神經(jīng)網(wǎng)絡(luò)(MTCNN)主干網(wǎng)絡(luò)上,將占用計(jì)算資源的普通卷積進(jìn)行舍棄,利用GhostNet網(wǎng)絡(luò)中計(jì)算量更低的Ghost bottleneck模組替代卷積的作用,重新構(gòu)建網(wǎng)絡(luò)特征提取功能,從而搭建一個(gè)新的模型。實(shí)驗(yàn)結(jié)果表明,該方法可以有效平衡參數(shù)量和精度。在Easy、Medium、Hard三種驗(yàn)證集上,與MTCNN相比在參數(shù)量?jī)H增加0.62M的前提下精度分別提升了 5.6%、6.6%、7.8%,與MobileNetV3-MTCNN相比在參數(shù)量減少1.27M的同時(shí)精度又分別提升了1.6%、0.8%、0.5%。該研究能夠在復(fù)雜場(chǎng)景下提高模型對(duì)小尺寸、多角度人臉檢測(cè)精度,同時(shí)也能夠有效平衡參數(shù)量和檢測(cè)精度使其成為在邊緣設(shè)備部署中更優(yōu)的選擇。
中圖分類號(hào):TP18文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2024.04.008
引用格式:黃杰,劉芬.復(fù)雜背景下小尺寸多角度人臉檢測(cè)方法研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(4):46-52.
Research on small.scale, multi.angle face detection methods in complex backgrounds
Huang Jie,Liu Fen
School of Electronic Engineering, Tianjin University of Technology and Education
Abstract: A face detection approach which is named GhostNet.MTCNN was proposed to enhance the precision of small sized face detection in complex backgrounds. On the backbone of MTCNN, this approach uses the lower computational Ghost bottleneck module which is in the GhostNet to replace the convolutional function, and discards the common convolution which occupies computer resources to configure the network′s feature extraction function. Through the process, a new module will be set up. The experimental results showed that the approach can effectively balance parameter quantity and precision. Across three validation sets categorized as Easy, Medium and Hard, compared to the original MTCNN, the proposed GhostNet-MTCNN achieves notable improvements in accuracy respectively 5.6%, 6.6% and 7.8%, while the parameter quantity only with a minimal increase of 0.62M. Furthermore, compared to MobileNetV3-MTCNN, GhostNet-MTCNN outperforms by enhancing accuracy by 1.6%, 0.8% and 0.5%, meanwhile a reduction in parameter quantity by 1.27M. The study can not only enhance the precision of the module to detect the small-sized and multi-angle faces in complex backgrounds but also can effectively balance parameter quantity and detection precision, which will make it a superior choice for edge deployment devices.
Key words : face detection; multi-task cascaded convolutional networks; lightweight network; edge devices

引言

人臉檢測(cè)技術(shù)廣泛應(yīng)用于考勤、解鎖設(shè)備、身份驗(yàn)證、監(jiān)控場(chǎng)所、自動(dòng)駕駛等場(chǎng)合[1-3]。在當(dāng)前的人臉檢測(cè)領(lǐng)域,通常采用深度神經(jīng)網(wǎng)絡(luò)架構(gòu)。2014年Girshick等人提出的R-CNN[4]目標(biāo)檢測(cè)算法模型成功地將深度學(xué)習(xí)應(yīng)用到目標(biāo)檢測(cè)領(lǐng)域,這種目標(biāo)檢測(cè)算法使用的是基于候選區(qū)域的檢測(cè)方法。Ren等人在FastR-CNN基礎(chǔ)上進(jìn)行改進(jìn),提出了FasterR-CNN[5],該模型提出了專門的候選區(qū)域生成網(wǎng)絡(luò)。除了以上兩種目標(biāo)檢測(cè)網(wǎng)絡(luò)模型外,還有基于單次目標(biāo)檢測(cè)的網(wǎng)絡(luò)模型,如YOLO[6-8]和SSD[9]。這類方法優(yōu)勢(shì)在于檢測(cè)速度快,但對(duì)小目標(biāo)的檢測(cè)效果不佳。這些深度神經(jīng)網(wǎng)絡(luò)在邊緣設(shè)備部署十分消耗資源,對(duì)于硬件的計(jì)算能力和能耗的要求很高,很難應(yīng)用到實(shí)際場(chǎng)景中。多任務(wù)級(jí)聯(lián)卷積神經(jīng)網(wǎng)絡(luò)(Multi-task Cascaded Convolutional Networks,MTCNN)[10]作為一種經(jīng)典的人臉檢測(cè)方法,以其高效的性能、模型復(fù)雜度低而聞名,更適合邊緣設(shè)備的應(yīng)用。但隨著人臉檢測(cè)任務(wù)的不斷復(fù)雜化,MTCNN也面臨一系列挑戰(zhàn),例如在小尺寸、遮擋、多角度和光照變化等情況下的檢測(cè)效果下降。文獻(xiàn)[11]中將MTCNN與VGGNet相結(jié)合,提升了模型檢測(cè)精度,但是相對(duì)應(yīng)的模型計(jì)算量也變多了。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000005968


作者信息:

黃杰,劉芬

(天津職業(yè)技術(shù)師范大學(xué)電子工程學(xué)院 ,天津300222)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。