基于貝葉斯攻擊圖的油氣生產物聯(lián)網(wǎng)系統(tǒng)風險評估
網(wǎng)絡安全與數(shù)據(jù)治理
劉子龍1,周純杰1,胡曉婭1,2,曹德舜3,李娜3
1.華中科技大學人工智能與自動化學院;2.深圳華中科技大學研究院;3.中石化安全工程研究院有限公司
摘要: 針對油氣生產物聯(lián)網(wǎng)系統(tǒng)動態(tài)風險評估問題,提出一種基于貝葉斯攻擊圖的油氣生產物聯(lián)網(wǎng)系統(tǒng)風險評估模型。首先通過對系統(tǒng)進行風險分析,得到入侵證據(jù)及系統(tǒng)漏洞,結合入侵證據(jù)和漏洞利用成功概率,采用EM算法對訓練數(shù)據(jù)進行數(shù)據(jù)補全并動態(tài)更新貝葉斯攻擊圖的條件概率參數(shù)表,通過條件概率表可計算得出先驗概率,結合入侵證據(jù)計算得到節(jié)點的后驗概率,進而得到系統(tǒng)的風險值,考慮資源利用的相關性對風險值進行最終修正。仿真結果分析證明了該模型的有效性和準確性。
中圖分類號:TP309 文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2024.04.001
引用格式:劉子龍,周純杰,胡曉婭,等.基于貝葉斯攻擊圖的油氣生產物聯(lián)網(wǎng)系統(tǒng)風險評估[J].網(wǎng)絡安全與數(shù)據(jù)治理,2024,43(4):3-11,23.
引用格式:劉子龍,周純杰,胡曉婭,等.基于貝葉斯攻擊圖的油氣生產物聯(lián)網(wǎng)系統(tǒng)風險評估[J].網(wǎng)絡安全與數(shù)據(jù)治理,2024,43(4):3-11,23.
Risk assessment of oil and gas production IoT system based on Bayesian attack graph
Liu Zilong1,Zhou Chunjie1, Hu Xiaoya1,2,Cao Deshun3, Li Na3
1.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology; 2.Research Institute of Huazhong University of Science and Technology in Shenzhen; 3.SINOPEC Research Institute of Safety Engineering Co.,
Abstract: Aiming at the dynamic risk assessment of oil and gas production IoT system, a risk assessment model of oil and gas production IoT system based on Bayesian attack graph was proposed. Firstly, through the risk analysis of the system, the intrusion evidence and system vulnerabilities are obtained, combined with the intrusion evidence and the success probability of vulnerability exploitation, the EM algorithm is used to complete the data of the training data and dynamically update the conditional probability parameter table of the Bayesian attack graph, the prior probability can be calculated through the conditional probability table, and the posterior probability of the node is calculated by combining the intrusion evidence, then the risk value of the system is obtained, and the risk value is finally corrected considering the correlation of resource utilization. The simulation results have proved the effectiveness and accuracy of the model.
Key words : Bayesian attack diagram; Bayesian parameter learning; valueatrisk calculation; risk value correction
引言
隨著信息技術的不斷發(fā)展和油氣產業(yè)的不斷推進,油氣生產物聯(lián)網(wǎng)系統(tǒng)逐步演化為開放、互聯(lián)互通式系統(tǒng),在監(jiān)測、控制和優(yōu)化油氣生產過程中發(fā)揮著日益重要的作用。然而信息技術和物理系統(tǒng)的深度融合,使得油氣生產物聯(lián)網(wǎng)系統(tǒng)面臨著極大的信息安全威脅。風險評估可反映信息系統(tǒng)的安全狀態(tài),進而為系統(tǒng)模型的搭建、安全策略的決定以及系統(tǒng)長期穩(wěn)定運行提供有力保障。國內外學者提出了多種安全評估方法,包括層次分析法、模糊風險評估法、貝葉斯網(wǎng)絡評估法、攻擊圖分析法等。
本文詳細內容請下載:
http://ihrv.cn/resource/share/2000005961
作者信息:
劉子龍1,周純杰1,胡曉婭1,2,曹德舜3,李娜3
(1.華中科技大學人工智能與自動化學院,湖北武漢470074;
2.深圳華中科技大學研究院,廣東深圳518057;
3.中石化安全工程研究院有限公司,山東青島266000)
此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。