《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于ADE-ABiGRU的物聯(lián)網(wǎng)安全態(tài)勢預(yù)測
基于ADE-ABiGRU的物聯(lián)網(wǎng)安全態(tài)勢預(yù)測
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
彭興維1,袁凌云1,2
1 云南師范大學(xué)信息學(xué)院,云南昆明650500; 2 云南師范大學(xué)民族教育信息化教育部重點(diǎn)實(shí)驗(yàn)室,云南昆明650500
摘要: 針對物聯(lián)網(wǎng)安全態(tài)勢預(yù)測的復(fù)雜性和多變性,提出一種基于ADEABiGRU的物聯(lián)網(wǎng)安全態(tài)勢預(yù)測模型。該模型融合了雙向門控循環(huán)單元、多頭注意力機(jī)制和殘差結(jié)構(gòu),并經(jīng)由自適應(yīng)差分進(jìn)化算法調(diào)優(yōu),增強(qiáng)了對復(fù)雜時(shí)序依賴性的捕捉和對數(shù)據(jù)的多維度分析能力。通過改進(jìn)自適應(yīng)差分進(jìn)化算法的自適應(yīng)機(jī)制,充分考慮時(shí)序數(shù)據(jù)特征,以提升全局搜索效率和局部逼近精度。在ToN_IoT數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)算法相比,該模型在MAPE、R2和MSE上均表現(xiàn)出色,展現(xiàn)出更高的預(yù)測準(zhǔn)確性和穩(wěn)定性。
中圖分類號(hào):TP393.08文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2023.12.008
引用格式:彭興維,袁凌云.基于ADE ABiGRU的物聯(lián)網(wǎng)安全態(tài)勢預(yù)測[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(12):48-53.
Internet of Things security posture prediction based on ADE ABiGRU
Peng Xingwei 1,Yuan Lingyun 1,2
1 College of Information Science and Technology, Yunnan Normal University, Kunming 650500, China;2 Key Laboratory of Educational Information for Nationalities, Ministry of Education, Yunnan Normal University, Kunming 650500, China
Abstract: Addressing the complexity and variability in IoT security situation prediction, this paper proposes an ADEABiGRUbased IoT security posture prediction model. The model merges bidirectional gated recurrent units, multihead attention mechanisms, and residual structures, optimized through adaptive differential evolution to enhance its ability to capture complex temporal dependencies and analyze data across multiple dimensions. Refinement of the adaptive mechanism within the adaptive differential evolution algorithm ensures thorough consideration of temporal data characteristics, improving global search efficiency and local approximation accuracy. Experimental results on the ToN_IoT dataset show that the model outperforms traditional algorithms in terms of MAPE, R2, and MSE, demonstrating higher predictive accuracy and stability.
Key words : network security; posture prediction; bidirectional gated recurrent unit; multihead attention mechanism; differential evolution

引言

物聯(lián)網(wǎng)是由眾多智能設(shè)備與網(wǎng)絡(luò)連接組成的綜合網(wǎng)絡(luò)體系,旨在實(shí)現(xiàn)設(shè)備間的智能互聯(lián)和數(shù)據(jù)共享。隨著物聯(lián)網(wǎng)設(shè)備的普及,安全威脅亦在增加[1]。相對于傳統(tǒng)的安全措施,網(wǎng)絡(luò)安全態(tài)勢感知作為一種新方法,為網(wǎng)絡(luò)行為的宏觀理解和意圖辨識(shí)提供了創(chuàng)新視角,進(jìn)而為網(wǎng)絡(luò)安全決策提供了有力支撐[2]。近年來,深度學(xué)習(xí)算法在多個(gè)領(lǐng)域均展現(xiàn)出了卓越的應(yīng)用潛力[3]。許多研究者對深度學(xué)習(xí)算法進(jìn)行優(yōu)化,提升其預(yù)測精準(zhǔn)度。Wang等人[4]提出了一種基于長短期記憶網(wǎng)絡(luò)(Long ShortTerm Memory network, LSTM)和門控循環(huán)單元(Gated Recurrent Unit, GRU)的雙層模型預(yù)測算法。為了利用長期數(shù)據(jù)提升預(yù)測準(zhǔn)確度,Zeng等人[5]在此基礎(chǔ)上提出了一種結(jié)合擴(kuò)展平穩(wěn)小波變換和嵌套LSTM的預(yù)測模型。為增強(qiáng)物聯(lián)網(wǎng)安全性,Tan等人[6]提出了一種基于HoneyNet的方法,通過該方法成功監(jiān)控對手攻擊行為。Chen[7]通過結(jié)合模擬退火算法和混合層次遺傳算法優(yōu)化徑向基函數(shù)(Radial Basis Function, RBF)神經(jīng)網(wǎng)絡(luò),為網(wǎng)絡(luò)安全態(tài)勢預(yù)測提供了一種新的解決思路。曹波等人[8]引入了一種融合時(shí)域卷積神經(jīng)網(wǎng)絡(luò)(Temporal Convolutional Network, TCN)和GRU的預(yù)測策略進(jìn)一步提高預(yù)測精確度。


作者信息

彭興維1,袁凌云1,2

(1 云南師范大學(xué)信息學(xué)院,云南昆明650500;

2 云南師范大學(xué)民族教育信息化教育部重點(diǎn)實(shí)驗(yàn)室,云南昆明650500)


文章下載地址:http://ihrv.cn/resource/share/2000005876


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。