《電子技術(shù)應用》
您所在的位置:首頁 > 其他 > 設(shè)計應用 > 基于CNN和GRU的高階調(diào)制自動編碼器研究
基于CNN和GRU的高階調(diào)制自動編碼器研究
2023年電子技術(shù)應用第5期
蔚淦丞1,2,3,廖明軍1,2,3,劉俊杰1,2,3,周雄1,2,3
(1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.先進網(wǎng)絡(luò)與智能互聯(lián)技術(shù)重慶市高校重點實驗室,重慶 400065; 3.泛在感知與互聯(lián)重慶市重點實驗室,重慶 400065)
摘要: 基于深度學習的自動編碼器是替代傳統(tǒng)通信發(fā)射器和接收器的一種新方法。提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)和門遞歸單元(Gate Recurrent Unit, GRU)的自動編碼器,集成了星座映射和信道編碼功能。設(shè)計了一種并行CNN結(jié)構(gòu),并將輸入比特流進行分段的one-hot編碼。這樣做有兩個優(yōu)點:(1)與不分段的one-hot編碼相比,數(shù)據(jù)的維度降低了;(2)數(shù)據(jù)的稀疏性降低,這使網(wǎng)絡(luò)可以更快更好地收斂。此外,引入GRU以實現(xiàn)信道編碼。所提出的模型可以應用于高階調(diào)制如4096QAM信號,在加性高斯白噪聲(AWGN)信道和瑞利信道下都有著優(yōu)于傳統(tǒng)方法的性能。
關(guān)鍵詞: 自動編碼器 CNN GRU 深度學習
中圖分類號:TN92
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223583
中文引用格式: 蔚淦丞,廖明軍,劉俊杰,等. 基于CNN和GRU的高階調(diào)制自動編碼器研究[J]. 電子技術(shù)應用,2023,49(5):41-46.
英文引用格式: Yu Gancheng,Liao Mingjun,Liu Junjie,et al. High order modulation autoencoder based on CNN and GRU[J]. Application of Electronic Technique,2023,49(5):41-46.
High order modulation autoencoder based on CNN and GRU
Yu Gancheng1,2,3,Liao Mingjun1,2,3,Liu Junjie1,2,3,Zhou Xiong1,2,3
(1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2.Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing 400065, China; 3.Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China)
Abstract: Autoencoder (AE) based on deep learning is a new method to replace traditional communication transmitter and receiver. This paper proposes an autoencoder based on Convolutional Neural Network (CNN) and Gate Recurrent Unit (GRU), which integrates constellation mapping and channel coding. Specifically, this paper designs a parallel CNN structure and segment the input bitstream for one-hot encoding, which has two advantages:(1) Compared with the original one-hot encoding, the dimension of the input data is reduced; (2) The features of the data are not too sparse, which allows the network to converge faster and better. In addition, the GRU is introduced for channel coding. The proposed model can be applied to high-order modulation such as 4096QAM signal, and has better performance than traditional methods under both added white Gaussian noise (AWGN) channels and Rayleigh channels.
Key words : autoencoder;CNN;GRU;deep learning

0 引言

無線通信要解決的主要問題是如何從包含噪聲和干擾的接收信號中盡可能無差錯地恢復發(fā)送信號。傳統(tǒng)方法通常以模塊化的方式設(shè)計和實現(xiàn)發(fā)射器和接收器,將每個模塊單獨優(yōu)化以獲得可靠的通信系統(tǒng)。然而這種“貪心”地將每個模塊優(yōu)化到最佳,并不意味著整個系統(tǒng)的性能達到了最佳。這是傳統(tǒng)通信系統(tǒng)長期存在的系統(tǒng)偏差。

近年來,隨著神經(jīng)網(wǎng)絡(luò)在計算機視覺、自然語言處理等領(lǐng)域的成功,無線通信領(lǐng)域也涌現(xiàn)出大量與深度學習結(jié)合的相關(guān)研究?;谏疃葘W習的端到端通信系統(tǒng)可以聯(lián)合優(yōu)化發(fā)送器和接收器,因此神經(jīng)網(wǎng)絡(luò)有很大的潛力成為下一代無線通信的主流技術(shù)。當發(fā)射器和接收器分別被視為編碼器和解碼器,整個通信系統(tǒng)可以被視為一個自動編碼器。而這個自動編碼器唯一的優(yōu)化目標就是信號的恢復精度——這也是衡量通信系統(tǒng)性能的唯一指標。



本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000005322




作者信息:

蔚淦丞1,2,3,廖明軍1,2,3,劉俊杰1,2,3,周雄1,2,3

(1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.先進網(wǎng)絡(luò)與智能互聯(lián)技術(shù)重慶市高校重點實驗室,重慶 400065;3.泛在感知與互聯(lián)重慶市重點實驗室,重慶 400065)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。