基于支持向量机和PCA的脑电α波运动想象分类研究
2022年电子技术应用第6期
蔡 靖1,刘光达1,王尧尧1,宫晓宇2
1.吉林大学 仪器科学与电气工程学院,吉林 长春130012;2.吉林大学 教育技术中心,吉林 长春130061
摘要: 针对脑电信号(EEG)运动想象分类过程中弱相关特征量影响分类准确度的问题,提出一种筛选方法,该方法是基于α波和主成分分析(PCA)算法的。基于脑机接口(BCI)系统,通过听觉诱发刺激产生向左和向右两种运动想象任务对应的脑电信号,并对其做小波包分解处理,然后进行脑电α频段信号的重构,从而提取出α波形并对其进行统计特征提取。再结合PCA技术和支持向量机(SVM)方法,实现弱相关特征的剔除和特征分类。根据筛选后的数据进行分类,所得结果准确率更高,信号分类的准确度由90.1%提高至94.0%。
中圖分類號: TN911.7;R318
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211723
中文引用格式: 蔡靖,劉光達(dá),王堯堯,等. 基于支持向量機和PCA的腦電α波運動想象分類研究[J].電子技術(shù)應(yīng)用,2022,48(6):23-27.
英文引用格式: Cai Jing,Liu Guangda,Wang Yaoyao,et al. Classification of α wave motor imagery based on SVM and PCA[J]. Application of Electronic Technique,2022,48(6):23-27.
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211723
中文引用格式: 蔡靖,劉光達(dá),王堯堯,等. 基于支持向量機和PCA的腦電α波運動想象分類研究[J].電子技術(shù)應(yīng)用,2022,48(6):23-27.
英文引用格式: Cai Jing,Liu Guangda,Wang Yaoyao,et al. Classification of α wave motor imagery based on SVM and PCA[J]. Application of Electronic Technique,2022,48(6):23-27.
Classification of α wave motor imagery based on SVM and PCA
Cai Jing1,Liu Guangda1,Wang Yaoyao1,Gong Xiaoyu2
1.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China; 2.Educational Technology Center,Jilin University,Changchun 130061,China
Abstract: A feature screening method based on alpha wave and principal component analysis was proposed to solve the problem that the weakly correlated feature quantity would affect the classification accuracy in EEG motor imagery classification. Based on brain computer interface system, the EEG signals corresponding to left and right motor imagination tasks were generated by auditory stimulation and processed by wavelet packet decomposition, and then the α band signals of the EEG were reconstructed, so as to extract the α waveforms and extract the statistical features. Combined with PCA technology and SVM method, the weak correlation features are eliminated and classified. According to the selected data, the accuracy of the results is higher, and the accuracy of signal classification is improved from 90.1% to 94.0%.
Key words : wavelet packet decomposition;SVM;motor imagery;PCA;EEG
0 引言
腦電信號EEG是大腦中神經(jīng)元產(chǎn)生的生物電[1],不同的運動想象活動中,大腦釋放不同的腦電信號[2]。腦電波按頻率大小分為五大類:α波(8~14 Hz)、β波(14~30 Hz)、θ波(4~8 Hz)、δ波(4 Hz以下)和γ波(30 Hz以上)[3]。本文對腦電信號進(jìn)行小波分解并提取α波[4],計算α波的多個信號特征,利用PCA技術(shù)篩選出強相關(guān)特征量,運用支持向量機進(jìn)行運動想象分類[5]。通過實驗發(fā)現(xiàn)運用小波包變換和PCA技術(shù)后的分類準(zhǔn)確率明顯提高。
本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000004413。
作者信息:
蔡 靖1,劉光達(dá)1,王堯堯1,宮曉宇2
(1.吉林大學(xué) 儀器科學(xué)與電氣工程學(xué)院,吉林 長春130012;2.吉林大學(xué) 教育技術(shù)中心,吉林 長春130061)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
