浙大求是特聘教授吳飛:數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互結(jié)合的智能計(jì)算
2021-12-01
來(lái)源:雷峰網(wǎng)leiphone
大數(shù)據(jù)時(shí)代的到來(lái),既向傳統(tǒng)的計(jì)算范式提出挑戰(zhàn),又為范式突破準(zhǔn)備了基礎(chǔ)條件。數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo)相互結(jié)合的智能計(jì)算恐怕是當(dāng)前社會(huì)正經(jīng)歷的人工智能時(shí)代,傳統(tǒng)的計(jì)算范式是怎樣的?大數(shù)據(jù)時(shí)代對(duì)新的計(jì)算范式提供了什么先天條件?有了數(shù)據(jù)驅(qū)動(dòng),為何還要與知識(shí)引導(dǎo)相互結(jié)合?
今年10月12日,2021中國(guó)人工智能大會(huì)(CCAI 2021)在成都正式啟幕,23位中外院士領(lǐng)銜,近百位學(xué)術(shù)技術(shù)精英共聚西南人工智能新高地,深入呈現(xiàn)人工智能學(xué)術(shù)研究,以及技術(shù)創(chuàng)新與行業(yè)應(yīng)用的最新成果。浙江大學(xué)求是特聘教授,博士生導(dǎo)師吳飛教授發(fā)表了題為《數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互結(jié)合的智能計(jì)算》的演講,娓娓道來(lái)地向與會(huì)者介紹了人類(lèi)社會(huì)已經(jīng)歷的四種計(jì)算范式,通過(guò)人腦的三種記憶體的工作模式引出社會(huì)目前已經(jīng)進(jìn)入的第五種計(jì)算范式時(shí)代,即數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互而結(jié)合的人工智能時(shí)代。
吳飛:浙江大學(xué)求是特聘教授,博士生導(dǎo)師。主要研究領(lǐng)域?yàn)槿斯ぶ悄?、多媒體分析與檢索和統(tǒng)計(jì)學(xué)習(xí)理論。吳老師是浙江大學(xué)人工智能研究所所長(zhǎng)、美國(guó)加州大學(xué)伯克利分校統(tǒng)計(jì)系訪問(wèn)學(xué)者。國(guó)家杰出青年科學(xué)基金獲得者、入選“高校計(jì)算機(jī)專(zhuān)業(yè)優(yōu)秀教師獎(jiǎng)勵(lì)計(jì)劃”、寶鋼優(yōu)秀教師獎(jiǎng),曾任教育部人工智能科技創(chuàng)新專(zhuān)家組工作組組長(zhǎng)、現(xiàn)任科技部科技創(chuàng)新2030“新一代人工智能”重大科技項(xiàng)目指南編制專(zhuān)家、《中國(guó)人工智能2.0發(fā)展戰(zhàn)略研究》執(zhí)筆人之一。
吳教授著有《人工智能導(dǎo)論:模型與算法》(高等教育出版社)和浙教版普通高中教科書(shū)信息技術(shù)選擇性必修教材《人工智能初步》(浙江教育出版社)等教材。在中國(guó)大學(xué)MOOC(愛(ài)課程)開(kāi)設(shè)國(guó)家級(jí)一流本科課程(線上課程)《人工智能:模型與算法》慕課
個(gè)人主頁(yè):https://www.x-mol.com/university/faculty/243543
本次演講,吳飛教授首先對(duì)1998年圖靈獎(jiǎng)獲得者 Jim Gray 提出的四種計(jì)算范式做了簡(jiǎn)要介紹,指出我們已經(jīng)進(jìn)入第五范式時(shí)代,隨后以人腦三種記憶體之間的聯(lián)系,引出數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互而結(jié)合的智能計(jì)算,最后舉例詳細(xì)介紹了數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互而結(jié)合的人工智能時(shí)代。
以下是演講全文,AI科技評(píng)論進(jìn)行了不改變?cè)獾恼怼?/p>
1
五種計(jì)算范式
圖靈獎(jiǎng)獲得者 Jim Gray 曾說(shuō),人類(lèi)社會(huì)已經(jīng)經(jīng)歷了四種計(jì)算范式。第一種是做實(shí)驗(yàn),比如,伽利略在斜塔上同時(shí)扔下兩個(gè)大小不一的鐵球,兩個(gè)鐵球同時(shí)落地。通過(guò)這個(gè)實(shí)驗(yàn),伽利略發(fā)現(xiàn)物體不管質(zhì)量大小,重力加速度相同。
麥克斯韋讓一段電流通過(guò)磁鐵的左右,發(fā)現(xiàn)磁鐵的南北極發(fā)生了變化,推導(dǎo)出磁弱力和電弱力之間的方程。因此,第二個(gè)探索未知領(lǐng)域的范式就是做方程,即建立方程和模型來(lái)指導(dǎo)我們的計(jì)算。
第三種范式是虛擬仿真,就是搭建系統(tǒng)去模擬物理世界,觀測(cè)仿真系統(tǒng)里各種物質(zhì)的變化。Jim Gray 認(rèn)為現(xiàn)在進(jìn)入了第四種范式,叫做數(shù)據(jù)密集型的計(jì)算年代。
今年8月,李國(guó)杰院士寫(xiě)了一篇文章,提出了一個(gè)疑問(wèn):為什么我們的人工智能上不著天下不落地?恐怕我們已經(jīng)進(jìn)入了第五范式時(shí)代。李院士的這篇文章,直接用 AlphaFold 的例子來(lái)表示他所認(rèn)為的第五范式:今后的科學(xué)計(jì)算,或者人工智能計(jì)算,一定是領(lǐng)域?qū)<液蛿?shù)據(jù)的驅(qū)動(dòng)相互結(jié)合,才能形成場(chǎng)景人工智能或者解決場(chǎng)景的任務(wù)。
數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo)相互結(jié)合的人工智能時(shí)代,即給定一堆數(shù)據(jù),我們需要從數(shù)據(jù)里面吸取知識(shí),然后基于知識(shí)做決策和服務(wù)。這里的數(shù)據(jù)一定是滿(mǎn)足任務(wù)可學(xué)習(xí)、結(jié)果可信、過(guò)程可推理和架構(gòu)可實(shí)現(xiàn)這些條件。這種架構(gòu)可實(shí)現(xiàn),是現(xiàn)在的大型互聯(lián)網(wǎng)公司有能力完成的,我們也發(fā)現(xiàn),下游的任務(wù)確實(shí)在大模型的驅(qū)動(dòng)下能夠得到很好解決。
2
三種記憶體
我們反思一下,人腦的智能計(jì)算或者科學(xué)計(jì)算是怎樣的模式?生物學(xué)家和神經(jīng)學(xué)家告訴我們,人的大腦有三種記憶體,第一個(gè)叫做瞬時(shí)記憶。我們可以眼觀六路、耳聽(tīng)八方,在一個(gè)空間里可以瞬時(shí)感覺(jué)到這個(gè)空間里各種各樣數(shù)據(jù),這就是瞬時(shí)記憶。但如果我們沒(méi)有對(duì)瞬時(shí)記憶的數(shù)據(jù)引起注意,這些信息就不會(huì)傳給工作記憶體。
瞬時(shí)記憶傳給工作記憶體后,工作記憶體直接展開(kāi)用因果智能計(jì)算的高層次數(shù)據(jù)活動(dòng),但這些高層次的活動(dòng)并不是就事論事,就數(shù)據(jù)論數(shù)據(jù),它會(huì)激活我們長(zhǎng)期記憶里的先驗(yàn)和知識(shí)。比如,我們今天來(lái)到成都,中午和朋友聚餐;。我們?cè)诘竭_(dá)成都時(shí),可能會(huì)回憶起上一次來(lái)成都干什么;和上次相比,成都有什么變化;朋友又發(fā)生了什么變化。我們經(jīng)常講弦外之音、話外之意,為什么別人講話,我們能聽(tīng)出話外之意?這是因?yàn)楣ぷ饔洃涹w激活了相關(guān)的信息來(lái)理解當(dāng)前的數(shù)據(jù)。
3
數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)相互而結(jié)合的人工智能時(shí)代
我們從這個(gè)過(guò)程已經(jīng)深刻感覺(jué)到,對(duì)當(dāng)前數(shù)據(jù)的理解,一定激活了其他信息,這種信息是一種潛在的信息,或者叫做common sense,即常識(shí)性信息,也有人把它稱(chēng)為暗知識(shí),我們無(wú)法表達(dá),機(jī)器也無(wú)法捕捉,但人的大腦可以很好地捕捉下來(lái)。既然人腦是這樣的活動(dòng)模式,現(xiàn)在的智能計(jì)算可否往這個(gè)渠道進(jìn)行?
DeepMind 在 2016 年發(fā)表了一篇《神經(jīng)圖靈機(jī)》的文章,我們知道圖靈計(jì)劃就是兩端無(wú)限長(zhǎng)的紙袋,上面有非常多的方格,然后把數(shù)據(jù)放在紙袋上,數(shù)據(jù)驅(qū)動(dòng)以寫(xiě)好的程序進(jìn)行。這個(gè)過(guò)程沒(méi)有利用到數(shù)據(jù)以外的信息。但神經(jīng)圖靈機(jī)架構(gòu)起一個(gè)外在記憶體,對(duì)當(dāng)前數(shù)據(jù)能更好地學(xué)習(xí)、理解和處理,以得到更好的學(xué)習(xí)成果。這篇文章發(fā)表后,Nature 期刊為其形成社論,稱(chēng)其為深度神經(jīng)推理,而不是平常的推理機(jī)制。
現(xiàn)在我們也發(fā)現(xiàn),只要有一個(gè) x 算法,神經(jīng)網(wǎng)絡(luò)一定會(huì)把 x 算法變成一個(gè) give 算法,或者一定想把它和認(rèn)知或者神經(jīng)結(jié)合起來(lái),也就是不停地探索計(jì)算方式和方法,與我們大腦和心理認(rèn)知如何更好地結(jié)合,這不是無(wú)病呻吟,而是沿著人腦的思路進(jìn)行擴(kuò)展?,F(xiàn)在的計(jì)算一定要有數(shù)據(jù),而且一定是數(shù)據(jù)驅(qū)動(dòng);亦即人工智能是引擎,大數(shù)據(jù)是燃料,一個(gè)模型空轉(zhuǎn)轉(zhuǎn)不起來(lái)。
第二,知識(shí)很重要。我們不能一味從數(shù)據(jù)里發(fā)現(xiàn)知識(shí),一定要有知識(shí)指導(dǎo)計(jì)算過(guò)程。此外,行為探索也很重要,人畢竟是在一個(gè)開(kāi)放的環(huán)境里進(jìn)行認(rèn)知與思考。所以,數(shù)據(jù)、知識(shí)、行為相互結(jié)合,是不是一種更好的計(jì)算模式?掀起新一輪人工智能浪潮使用的計(jì)算方法,AlphaGo 有深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)和蒙特卡羅樹(shù)搜索三把利劍,而AlphaFold 則是圖神經(jīng)網(wǎng)絡(luò)、注意力模型和物理建模相互結(jié)合。
科學(xué)計(jì)算經(jīng)過(guò)了三代發(fā)展,已經(jīng)把數(shù)據(jù)和知識(shí)進(jìn)行更好的探索。第一代是給定一個(gè)結(jié)構(gòu),然后去預(yù)測(cè)結(jié)構(gòu)的性質(zhì);第二代是給定一些組成成分,去重建結(jié)構(gòu),然后基于重建的結(jié)構(gòu)預(yù)測(cè)性質(zhì);第三代就是給定一堆數(shù)據(jù),從給定的數(shù)據(jù)里繁衍結(jié)構(gòu),以及推理這個(gè)結(jié)構(gòu)的性質(zhì),這是一個(gè)很重要的人工智能發(fā)展方向。
AlphaFold是 1972 年諾貝爾獎(jiǎng)獲得者的一個(gè)猜想。人體有非常多的氨基酸,氨基酸里編碼了蛋白質(zhì),這些蛋白質(zhì)不同的三維空間結(jié)構(gòu)已經(jīng)定義了我們生命的功能。那么,給定一段氨基酸,能否預(yù)測(cè)氨基酸所具有的三維空間結(jié)構(gòu)?如果能預(yù)測(cè),我們就編碼了生命的功能。
今年8月份,《自然》雜志發(fā)表了一篇現(xiàn)在被稱(chēng)為 AlphaFold 的文章,《科學(xué)》雜志同時(shí)也發(fā)表了一篇叫做 Rose TTAFold 的文章。AlphaFold 和 Rose TTAFold 都非常強(qiáng)調(diào) attention,即注意力,但這個(gè)“注意力”不是我們大腦的一種注意力,注意力是學(xué)習(xí)的輸入和輸出之間的一種關(guān)系。例如,給定一幅人臉圖像,為什么要去預(yù)測(cè)這是一張人臉?一定是學(xué)習(xí)到的輸入和輸出之間存在一種關(guān)聯(lián),這個(gè)關(guān)聯(lián)肯定是通過(guò)像素點(diǎn)復(fù)雜的空間模式挖掘出來(lái)的。如果現(xiàn)在輸入一段氨基酸序列,去重演它的三維結(jié)構(gòu),是不是也是學(xué)一種叫做 attention 的關(guān)聯(lián)?
這兩篇文章有什么區(qū)別?Rose TTAFold 是美國(guó)華盛頓大學(xué)的一個(gè)實(shí)驗(yàn)室寫(xiě)的,它的第一作者非常坦白地承認(rèn) Rose TTAFold 的性能不如 AlphaFold,因?yàn)樗麄兊膶?shí)驗(yàn)室沒(méi)有深度學(xué)習(xí)的工程師,只是一些生物學(xué)家拿著 Deep Learning 的工具寫(xiě)出來(lái)。但是 AlphaFold 不僅會(huì)利用工具,還會(huì)修改工具,比如,它可以對(duì) Deep Learning 的一些結(jié)構(gòu)進(jìn)行修改和重新設(shè)計(jì),因此其性能超越了 Rose TTAFold。
大家可以反思一下,今后的人工智能一定是來(lái)自不同領(lǐng)域的工程師一起協(xié)作,這也預(yù)測(cè)著李國(guó)杰院士說(shuō)的為什么人工智能上不了天、落不了地,因?yàn)橐鉀Q場(chǎng)景的任務(wù),一定要和場(chǎng)景的工程師,以及 Deep Learning 的專(zhuān)家結(jié)合起來(lái)。按照李院士的說(shuō)法,就是要把領(lǐng)域的知識(shí)和數(shù)據(jù),在 Deep Learning工具之下更好地結(jié)合,他把它稱(chēng)為正在呈現(xiàn)的第五范式。
2020年3月份,李院士受命撰寫(xiě)中國(guó)工程院有關(guān)人工智能的特刊,我是咨詢(xún)副主編。特刊發(fā)表時(shí),編輯部的同事讓我們畫(huà)封面文章,我和一位年輕老師先用鉛筆畫(huà),只有人腦和機(jī)器腦結(jié)合起來(lái)才會(huì)形成這種學(xué)會(huì)學(xué)習(xí)能力。人的大腦一定是稀疏的,雖然人腦據(jù)說(shuō)有 400 億個(gè)神經(jīng)元,但完成任務(wù)時(shí)只有一小部分的神經(jīng)元被激活,所以人腦一天只有 25 度電。而 AlphaGo Zero 經(jīng)過(guò)了 2900 萬(wàn)次的訓(xùn)練,能戰(zhàn)勝所有的 AlphaGo,它的耗電量幾乎等于洛杉磯一年的耗電量。
人的大腦很復(fù)雜,但在完成某個(gè)任務(wù)時(shí)一定是稀疏的,而機(jī)器腦一定是密集的 ,比如機(jī)器的進(jìn)化速度服從摩爾定律,每18個(gè)月性能就提升一倍。一個(gè)稀疏的人腦和一個(gè)稠密的機(jī)器腦結(jié)合,恐怕就是邁向人機(jī)耦合獲得數(shù)據(jù)驅(qū)動(dòng)和人的知識(shí)相互結(jié)合的時(shí)代。這期期刊還邀請(qǐng)了一些專(zhuān)家撰寫(xiě)文章,比如潘院士認(rèn)為人工智能的下一步就是多重知識(shí)表達(dá)。今年的 CAAI 年會(huì)上有一期分論壇就叫做視覺(jué)知識(shí)的表達(dá),把知識(shí)表達(dá)好,可能是下一步人工智能邁進(jìn)的正確方向。
朱松純老師也受邀寫(xiě)了一篇文章,以此回答他認(rèn)為的“機(jī)器大腦是大數(shù)據(jù)小任務(wù),人的大腦是小數(shù)據(jù)大任務(wù)”。但是,小數(shù)據(jù)大任務(wù)不是只給一點(diǎn)數(shù)據(jù)就能學(xué)復(fù)雜的任務(wù),一定是在大任務(wù)的構(gòu)建之下。只有小數(shù)據(jù),如何完成大任務(wù)的訓(xùn)練?知識(shí)在其中起了很重要的作用,這里的知識(shí)不只是舊數(shù)據(jù),可編碼的知識(shí)、可感知的知識(shí)、暗知識(shí)以及常識(shí)性的知識(shí)一定也參與了大腦的智能活動(dòng)。朱老師的這篇文章的標(biāo)題也很吸引人,叫《“暗”,不止于“深”——邁向認(rèn)知智能與類(lèi)人常識(shí)的范式轉(zhuǎn)換》。
我們最近在做一些數(shù)據(jù)驅(qū)動(dòng)與知識(shí)引導(dǎo)的工作,首先這里的知識(shí)肯定是領(lǐng)域知識(shí)。如果是維基百科或百度百科的知識(shí),把高中生都懂的知識(shí)放到神經(jīng)系統(tǒng)的模式里,也許能改進(jìn)神經(jīng)系統(tǒng)的學(xué)習(xí)性能,但和領(lǐng)域知識(shí)相比,作用力而言要小一點(diǎn)。我舉兩個(gè)例子,第一個(gè)例子是司法的智能化學(xué)習(xí),這里有兩個(gè)案例都給出了一些司法數(shù)據(jù)。第一個(gè)案例,法院認(rèn)定了一些事實(shí),原告要求法院判定他的一些事實(shí)是成立的;第二個(gè)案例,法院認(rèn)定了一些事實(shí),原告要求法院在這些認(rèn)定事實(shí)的基礎(chǔ)上,判決原告的一些訴求是成立的。但在一些真實(shí)的案子里,原告有些訴求被駁回,有些則被法院認(rèn)同。
那么,什么情況下原告的訴求會(huì)被法院認(rèn)同,什么時(shí)候會(huì)被駁回?能不能把司法知識(shí)和這樣的數(shù)據(jù)結(jié)合起來(lái),形成數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo)相互結(jié)合的神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法?我們提出了數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo)相互結(jié)合的方法,數(shù)據(jù)由神經(jīng)網(wǎng)絡(luò) co-attention network 去學(xué),由數(shù)據(jù)驅(qū)動(dòng)學(xué)習(xí)出數(shù)據(jù)模式,再加以 legal knowledge,即一階編碼的司法知識(shí),兩者結(jié)合起來(lái)以加強(qiáng)原告訴求的判斷。把一些司法領(lǐng)域的知識(shí)通過(guò)一階位置編碼利用起來(lái),與數(shù)據(jù)驅(qū)動(dòng)進(jìn)行結(jié)合,在一些數(shù)據(jù)集上進(jìn)行了測(cè)試。
第二個(gè)例子叫做 video caption,主要是想解決一段短的 video clip 怎么得到更好的文本描述,主要和阿里達(dá)摩院合作。因?yàn)榘⒗镆層脩?hù)點(diǎn)擊商品,必須要把商品所對(duì)應(yīng)的視頻用文本描述出來(lái)。如何自動(dòng)生成這種文本描述?我們引入了一個(gè)商品屬性的知識(shí)圖譜,通過(guò)圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)得到不同的紙袋之間的空間分布,再通過(guò)卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)得到一個(gè)像素點(diǎn)的空間分布模式,然后把這些知識(shí)結(jié)合起來(lái),是不是能夠生成一種更具廣告效應(yīng)的文本描述?
把數(shù)據(jù)和視覺(jué)知識(shí)結(jié)合后,能不能把一些外在的記憶體也引進(jìn)來(lái)?正如剛剛講的話外之意和弦外之音,不能只針對(duì) video 理解 video,video 里一定有一些高級(jí)語(yǔ)義或?qū)傩杂|發(fā)了外在記憶體里的知識(shí),加以利用這種知識(shí)更好地做視覺(jué)信息的分析與處理。再進(jìn)一步,引入因果知識(shí)的關(guān)系,去除偽相關(guān)的關(guān)聯(lián),
例如,一個(gè)吉他手穿著T恤彈吉他,也許彈吉他的人都喜歡穿T恤,本來(lái)彈吉他和穿什么衣服沒(méi)有因果關(guān)系,但由于數(shù)據(jù)選擇的偏差,選擇的這些場(chǎng)景,吉他手都穿了T恤,結(jié)果系統(tǒng)錯(cuò)誤地認(rèn)為,T恤和吉他有關(guān)聯(lián)。這有點(diǎn)像因果學(xué)習(xí)中,我們常說(shuō)的公雞打鳴和太陽(yáng)升起的例子,公雞打鳴和太陽(yáng)升起好像有因果關(guān)系,因?yàn)楣u一打鳴太陽(yáng)就升起。但如果有一天,把全世界的公雞都?xì)⑺?,太?yáng)照樣升起,它們之間是一種偽關(guān)聯(lián),這種關(guān)系影響了我們學(xué)習(xí)的效果。如何消除T恤和吉他手的這種關(guān)聯(lián),用統(tǒng)計(jì)分析的關(guān)聯(lián)學(xué)習(xí),會(huì)說(shuō)樂(lè)器和襯衫之間的關(guān)聯(lián)達(dá)到6%,但是引入因果的話,可以把這種偽關(guān)聯(lián)去掉。
數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo)實(shí)際上是很難的,特別是如何編碼領(lǐng)域知識(shí)。對(duì)徐院士之前報(bào)告里的一句話非常深刻:數(shù)據(jù)不夠模型上,模型不夠知識(shí)上。好像有點(diǎn)道理,數(shù)據(jù)不夠怎么辦?用更強(qiáng)大的模型去擬合,比如支持向量機(jī)。模型的能力不夠怎么辦?知識(shí)上,把數(shù)據(jù)、模型和知識(shí)和算力結(jié)合起來(lái);算力也很重要,因?yàn)槲覀兊哪P同F(xiàn)在變得比較復(fù)雜。
所以,我們提的問(wèn)題首先一定要領(lǐng)域相關(guān),比如化學(xué)問(wèn)題、物理問(wèn)題等;然后是物理建模,例如,麥克風(fēng)放在桌子上,我們不能說(shuō)麥克風(fēng)懸浮在空中,這樣的物理結(jié)構(gòu)是在人類(lèi)社會(huì)是不存在的,一定要從物理結(jié)構(gòu)里更好地約束建模的方法。最后,人一定要參與進(jìn)去,這個(gè)問(wèn)題確實(shí)很復(fù)雜,實(shí)際上是我們現(xiàn)在面臨的巨大挑戰(zhàn)。但人工智能在驅(qū)動(dòng)科學(xué)計(jì)算,科學(xué)計(jì)算反過(guò)來(lái)也會(huì)驅(qū)動(dòng)人工智能的進(jìn)展。我們現(xiàn)在用數(shù)據(jù)和神經(jīng)網(wǎng)絡(luò),把物理的規(guī)則和模型結(jié)合起來(lái),是不是能更好地解決領(lǐng)域相關(guān)的問(wèn)題?而領(lǐng)域相關(guān)問(wèn)題的解決,就促進(jìn)了人工智能的發(fā)展。
現(xiàn)在有一個(gè)方向的研究,認(rèn)為精確刻畫(huà)交通湍流和疾病傳播等復(fù)雜系統(tǒng)的動(dòng)力學(xué)偏微分方程異常困難。如何刻畫(huà)新冠肺炎的傳播?怎么刻畫(huà)馬航失事的飛機(jī)在大西洋和太平洋的殘???它受到非常多的因素影響,大西洋彼岸一只蝴蝶翅膀的扇動(dòng),就會(huì)帶來(lái)臺(tái)風(fēng)和暴雨,怎么帶來(lái)的臺(tái)風(fēng)和風(fēng)暴雨,這很難用方程表示。怎么辦?我們可以學(xué)神經(jīng)網(wǎng)絡(luò),但神經(jīng)網(wǎng)絡(luò)的方程我們不知道,且這些神經(jīng)網(wǎng)絡(luò)也不是簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò),而是建立輸入數(shù)據(jù)和輸出數(shù)據(jù)之間的關(guān)聯(lián)?,F(xiàn)在沒(méi)有這個(gè)方式怎么辦?
神經(jīng)算子是科學(xué)計(jì)算里非常熱門(mén)的一個(gè)方向,要把知識(shí)和數(shù)據(jù)更好地結(jié)合起來(lái),就要更好地研究一些科學(xué)算子,更好地進(jìn)行設(shè)計(jì),把物理建模的約束融入到模型之中的模型。然后還要有一些快速的優(yōu)化方法,從軟件的角度進(jìn)行考慮,因?yàn)檎鎸?shí)世界實(shí)在太復(fù)雜了,我們無(wú)法用方程建立,只能用逼近、函數(shù)、優(yōu)化、擬合等科學(xué)的方法加以解決。
我們和潘院士之前做過(guò)一個(gè)調(diào)研,通用人工智能現(xiàn)在的態(tài)勢(shì)到底是怎樣的?很多媒體說(shuō)美國(guó)已經(jīng)把通用人工智能當(dāng)成國(guó)家任務(wù)在積極部署,我們把特朗普、奧巴馬和拜登政府的國(guó)家人工智能規(guī)劃通讀一遍后,發(fā)現(xiàn)美國(guó)沒(méi)有把通用人工智能當(dāng)成國(guó)家的重要任務(wù),最多只在奧巴馬政府時(shí)期,用了一個(gè)叫做 General Purpose 的 AI。General Purpose 意為“通用目的”,和我們講的 AGI 不同。在美國(guó)的這些人工智能計(jì)劃里,更多是人工智能應(yīng)該 more general,也就是更靈活、更通用。
借今天的演講我想傳遞一個(gè)想法:數(shù)據(jù)驅(qū)動(dòng)和知識(shí)引導(dǎo),這里的知識(shí)一定是來(lái)自領(lǐng)域的知識(shí),AlphaFold、Rose TTAFold 肯定沒(méi)有用到百度百科或維基百科的知識(shí),一定是化學(xué)家能看懂的知識(shí),只有把這些知識(shí)和領(lǐng)域的專(zhuān)家做更好的結(jié)合,我們的人工智能才會(huì) more general,才會(huì)向領(lǐng)域?qū)<业哪芰拷?/p>