中圖分類號: TN919.8 文獻標識碼: A DOI:10.16157/j.issn.0258-7998.211453 中文引用格式: 余東航,李強,聶駿. 基于視頻內容特征值的VVC碼率控制算法[J].電子技術應用,2021,47(12):89-93. 英文引用格式: Yu Donghang,Li Qiang,Nie Jun. Versatile video coding rate control algorithm based on content feature value[J]. Application of Electronic Technique,2021,47(12):89-93.
Versatile video coding rate control algorithm based on content feature value
Yu Donghang,Li Qiang,Nie Jun
School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China
Abstract: Aiming at the problem that the VVC rate control algorithm does not comprehensively consider the actual texture characteristics of the coded frame, and its rate-distortion performance and visual experience need to be improved, a rate control algorithm based on video content-related feature values is proposed. By introducing the gray level co-occurrence matrix, the relevant feature values reflecting the texture complexity of the encoded frame are calculated, which are used to adjust the image weight of the frame layer; based on the R-λ model, the λ parameter of the LCU layer is recalculated to improve the bit allocation of the LCU layer Accuracy. After testing, compared with the adaptive bit allocation algorithm in the low-delay configuration, the algorithm in this paper is closer to the target bit rate, the rate-distortion performance is improved by 0.86%, and the subjective quality of video coding is significantly improved.
Key words : versatile video coding;rate control;gray-level co-occurrence matrix;R-λ model;bit allocation
0 引言
多功能視頻編碼(Versatile Video Coding,VVC)是由ISO/IEC的MPEG和ITU-T的VCEG聯(lián)合制定,于2020年7月正式發(fā)布的新一代視頻編碼標準。與以前標準相比,VVC具有更高的壓縮性能和通用性,可應用于高清和超高清視頻、360°全向視頻、高動態(tài)視頻范圍和廣色域、沉浸式媒體等多種應用場景。
VVC碼率控制算法仍沿用了高效視頻編碼(High Efficiency Video Coding,HEVC)中的R-λ模型[1]?;谠撃P偷拇a率控制算法具有控制效果好、比特波動小的優(yōu)點,但對局部紋理復雜邊緣輪廓顯著的視頻,最大編碼單元(Largest Coding Unit,LCU)層的比特分配并不準確,導致峰值信噪比有所損失。針對該模型碼率控制算法的不足,文獻[2]和[3]以LCU層的梯度值衡量編碼區(qū)域的復雜度,用于指導R-λ模型中LCU的比特分配,提升了R-λ模型的性能;文獻[4]對LCU層編碼模型參數做偏差修正處理,重新計算更新待編碼LCU的權重分配,提升了LCU層的比特精確度;文獻[5]根據視頻幀間相關性,參考前一幀R-λ模型更新后計算得到的比特數預測待編碼幀的復雜度,提高了視頻編碼質量;文獻[6]將I幀消耗大量比特的影響分攤到整個序列,從而改進了前幾個圖像組(Group of Pictures,GOP)比特分配量,并在GOP編碼過程中根據實際消耗的比特不斷更新幀層的λ參數,提高了后續(xù)幀的比特分配精確度。