文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.08.014
引用格式: 張辰,陳陽. 基于模板匹配OCR的報告自動歸檔系統(tǒng)研究[J].信息技術與網絡安全,2021,40(8):84-89.
0 引言
光學字符識別(Optical Character Recognition,OCR)是指對文本資料的圖像文件進行分析識別處理,獲取文字及版面信息的過程。亦即將圖像中的文字進行識別,并以文本的形式返回。其在文檔歸檔應用背景下具有廣闊的市場前景。OCR字符識別技術經過多年發(fā)展,已有LeNet[1]、RRPN[2]、DMPNet[3]、CTPN[4]等OCR網絡結構被提出。其中,CTPN是目前應用最廣的文本檢測模型之一。其基本假設是單個字符相較于異質化程度更高的文本行更容易被檢測,因此先對單個字符進行類似R-CNN的檢測,并在檢測網絡中加入雙向LSTM[5],使檢測結果形成序列提供了文本的上下文特征,便可以將多個字符進行合并得到文本行。LeNet網絡提出時間較早,在銀行票據手寫體字符識別方面有著長期的應用。上述網絡結構可以在通用背景下有效識別場景中的字符,對于非垂直文本也能進行檢測。對于大多數OCR的應用場景,并不需要對圖片中的所有字符進行識別,往往只需要對部分ROI區(qū)域的字符進行檢測,但OCR技術對ROI區(qū)域的位移與旋轉適應性較差,需要訓練單獨的網絡來對ROI區(qū)域進行定位。機器視覺技術在制造業(yè)領域有著廣泛的應用,特別是在工件定位、視覺測量等方面有大量成熟的算法,其中,模板匹配算法則針對工業(yè)定位[6-7]的應用背景,提出了基于灰度[8]、邊緣[9]、變換域[10]的模板匹配算法,能適應各種工業(yè)定位需求[11-15]。
本文詳細內容請下載:http://ihrv.cn/resource/share/2000003731
作者信息:
張 辰1,陳 陽2
(1.廣東省建設工程質量安全檢測總站有限公司,廣東 廣州510500;
2.廣東省建筑科學研究院集團股份有限公司,廣東 廣州510500)