《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于CNN-LSTM神經(jīng)網(wǎng)絡(luò)的聲紋識別系統(tǒng)設(shè)計(jì)
基于CNN-LSTM神經(jīng)網(wǎng)絡(luò)的聲紋識別系統(tǒng)設(shè)計(jì)
2021年電子技術(shù)應(yīng)用第3期
牟俊杰,姚 剛,孫 濤
海軍航空大學(xué) 岸防兵學(xué)院,山東 煙臺264001
摘要: 為實(shí)現(xiàn)對心血管疾病的預(yù)警,及早發(fā)現(xiàn)以心率、心肺音惡性變化為代表的危險(xiǎn)前兆,設(shè)計(jì)基于CNN-LSTM神經(jīng)網(wǎng)絡(luò)的聲紋識別系統(tǒng)。利用物聯(lián)網(wǎng)技術(shù)融合心率傳感芯片、單片機(jī)、電子聽診器等設(shè)備,對心率進(jìn)行實(shí)時(shí)監(jiān)測、輔助預(yù)警;根據(jù)梅爾道普頻率系數(shù)對心肺音信號進(jìn)行特征提取,構(gòu)建基于CNN-LSTM算法的心肺音智能識別模型,對部分心肺音進(jìn)行智能檢測診斷,實(shí)驗(yàn)結(jié)果顯示損失值為0.082,準(zhǔn)確率達(dá)0.908。開拓了人工智能技術(shù)在心血管疾病預(yù)警方面的應(yīng)用空間,前瞻性強(qiáng)、結(jié)構(gòu)框架完整,可有效避免醫(yī)療資源浪費(fèi),前置對心血管疾病的應(yīng)對措施,市場應(yīng)用前景廣闊,對于推動智慧醫(yī)療有重大作用。
中圖分類號: TP399
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.200960
中文引用格式: 牟俊杰,姚剛,孫濤. 基于CNN-LSTM神經(jīng)網(wǎng)絡(luò)的聲紋識別系統(tǒng)設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2021,47(3):75-78.
英文引用格式: Mu Junjie,Yao Gang,Sun Tao. Design of vocieprint recognition system based on CNN-LSTM neural network[J]. Application of Electronic Technique,2021,47(3):75-78.
Design of vocieprint recognition system based on CNN-LSTM neural network
Mu Junjie,Yao Gang,Sun Tao
Coastal Defense College,Naval Aviation University,Yantai 264001,China
Abstract: For warning of cardiovascular disease,in order to early detect the change of heart and lung voice representing the signs of danger,the vocieprint recognition system based on CNN-LSTM is designed. Using the Internet of Things technology coalescing the heart rate sensor chip, single-chip computer, electronic stethoscope, such as equipments,it can monitor the heart rate in real-time, early warn.And the cardiopulmonary sound recognition model based on the CNN-LSTM algorithm is trained, results show that the loss value is 0.082, accuracy rate of 0.908. The system is forward-looking and has a complete structural framework, which can effectively avoid the waste of medical resources, preposite the countermeasures for cardiovascular diseases.It has a broad application prospect in the market, and plays a significant role in promoting smart medical treatment.
Key words : CNN;LSTM;features extraction;MFCC;cardiovascular disease;vocieprint recognition

0 引言

    隨著人工智能的突破性進(jìn)展和“互聯(lián)網(wǎng)+”技術(shù)的普及,智慧醫(yī)療成為醫(yī)療技術(shù)發(fā)展的新引擎,誕生了一系列智能醫(yī)療服務(wù)產(chǎn)品,如智能藥盒、智能手環(huán)等[1]。但人工智能過高的成本導(dǎo)致尋找合適的切入方式顯得尤為關(guān)鍵[2]

    在人口老齡化日益嚴(yán)重的當(dāng)下,心血管疾病不斷威脅老年人健康,引發(fā)社會廣泛關(guān)注。由于醫(yī)療知識欠缺、行動不便等原因,部分老年人就醫(yī)不及時(shí),錯過了搶救的黃金時(shí)間,留下永遠(yuǎn)的遺憾。開發(fā)心血管疾病方面的智能預(yù)警系統(tǒng),滿足龐大的老年人群體需求迫在眉睫[3]。在醫(yī)療實(shí)踐中,對心血管疾病的診斷常常以心率、心肺音數(shù)據(jù)為重要支撐,國內(nèi)外以DSP[4]、長短時(shí)記憶(Long Short Time Memory,LSTM)[5]、卷積神經(jīng)網(wǎng)絡(luò)[6](Convolutional Neural Network,CNN)等方法算法為手段對心血管疾病的信號診斷進(jìn)行了相當(dāng)多的分析,但基本均停留在理論層面,距離軟硬件結(jié)合的實(shí)際應(yīng)用尚有差距。各種醫(yī)療設(shè)備的聚焦點(diǎn)主要是信號的準(zhǔn)確采集、分離[7-8],基于醫(yī)療倫理等原因,對智能診斷設(shè)備的研制尚處于知識儲備期,有巨大的空白亟需填補(bǔ)。本文設(shè)計(jì)了基于CNN-LSTM的心血管疾病預(yù)警系統(tǒng),利用物聯(lián)網(wǎng)技術(shù)采集心率和心肺音等健康指標(biāo)數(shù)據(jù),對老人的健康狀況進(jìn)行實(shí)時(shí)監(jiān)測、預(yù)警,采用基于CNN-LSTM模型的智能算法對心肺音信號進(jìn)行智能分析預(yù)警。系統(tǒng)著重考慮了適用性、穩(wěn)定性和成本,具有較高的實(shí)用價(jià)值和完整的結(jié)構(gòu)框架,是利用智慧醫(yī)療從應(yīng)用層面解決心血管疾病問題的一次重要探索。




本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000003439




作者信息:

牟俊杰,姚  剛,孫  濤

(海軍航空大學(xué) 岸防兵學(xué)院,山東 煙臺264001)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。