《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于運(yùn)動(dòng)想象的腦電信號(hào)特征提取研究
基于運(yùn)動(dòng)想象的腦電信號(hào)特征提取研究
信息技術(shù)與網(wǎng)絡(luò)安全
郭閩榕
(福州大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州350000)
摘要: 基于運(yùn)動(dòng)想象腦電信號(hào)的腦-機(jī)接口系統(tǒng)在醫(yī)療領(lǐng)域具有廣闊的應(yīng)用前景,被應(yīng)用于運(yùn)動(dòng)障礙人士的輔助控制以及腦卒的預(yù)后康復(fù)。由于運(yùn)動(dòng)想象的腦電信號(hào)信噪比低、不平穩(wěn)以及差異性顯著,對(duì)腦電信號(hào)識(shí)別帶來(lái)負(fù)面影響。一個(gè)有效的特征提取算法能夠提高腦-機(jī)系統(tǒng)的腦電信號(hào)識(shí)別率。提出一種多通道的腦電信號(hào)特征提取方法,將數(shù)據(jù)矩陣分解為基矩陣與系數(shù)矩陣的乘積,以類間離散度做為性能判據(jù)對(duì)系數(shù)矩陣進(jìn)行特征提取,提取可分性更高、維數(shù)更少的特征。結(jié)合腦電信號(hào)識(shí)別領(lǐng)域常見的分類器在2008年BCI競(jìng)賽數(shù)據(jù)集上進(jìn)行驗(yàn)證,證明所提方法是有效的。
中圖分類號(hào): TP391.4
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.01.011
引用格式: 郭閩榕。 基于運(yùn)動(dòng)想象的腦電信號(hào)特征提取研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(1):62-66.
Feature extraction of EEG signals based on motor imagery Guo Minrong
Guo Minrong
(College of Mathematics and Computer Science,F(xiàn)uzhou University,F(xiàn)uzhou 350000,China)
Abstract: The brain-computer interface(BCI) system based on motor imagery(MI) electroencephalogram(EEG) has a broad application prospect in the medical field, which can be applied to the auxiliary control of the disabled and the prognosis and rehabilitation of the brain.Because of the low SNR, instability and significant difference of EEG signal in motion imagination, it has a negative effect on EEG signal recognition.An effective feature extraction method can enhance the accuracy of EEG in BCI system. In this paper, a multi-channel feature extraction method for EEG signals is proposed.First of all,the data matrix is decomposed into the product of the basis matrix and the coefficient matrix.Then the coefficient matrix is extracted by using the inter-class dispersion as the performance criterion to extract the features with higher separability and less dimension.The experiment of BCI 2008 competition data set shows that the method is effective.
Key words : brain-computer interface;electroencephalogram;motor imagery;feature extraction;matrix decomposition

0     引言

  腦-機(jī)接口[1](Brain-Computer Interface,BCI)系統(tǒng)是一種不需要任何外部肌肉活動(dòng)的通信系統(tǒng),能夠?qū)⒋竽X活動(dòng)產(chǎn)生的腦信號(hào)轉(zhuǎn)化為對(duì)電子設(shè)備的指令。運(yùn)動(dòng)想象(Motor Imagery,MI)是腦-機(jī)接口領(lǐng)域的一大研究熱點(diǎn),有神經(jīng)功能障礙、運(yùn)動(dòng)障礙的人可以通過(guò)大腦控制假肢[2],也能夠應(yīng)用于腦卒等疾病的預(yù)后康復(fù)中[3],提高患者的恢復(fù)效果。此外,基于運(yùn)動(dòng)想象的腦-機(jī)接口系統(tǒng)還被應(yīng)用于游戲領(lǐng)域[4],為健康用戶提供娛樂新方式。

  記錄腦活動(dòng)的方式多種多樣,由于采集設(shè)備價(jià)格較低、無(wú)侵入性、高分辨率等優(yōu)點(diǎn),基于腦電(Elec-troencephalogram,EEG)信號(hào)的BCI系統(tǒng)的應(yīng)用最為廣泛。在采集數(shù)據(jù)時(shí),由于EEG信號(hào)是通過(guò)放置在頭皮上的導(dǎo)聯(lián)采集的,腦信號(hào)要經(jīng)過(guò)大腦顱骨和皮膚才能到達(dá)頭皮,還會(huì)受到眼電、肌電、心電和周邊環(huán)境的影響,故信噪比較低。






本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003319






作者信息:

郭閩榕

(福州大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州350000)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。