《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 设计应用 > 基于运动想象的脑电信号特征提取研究
基于运动想象的脑电信号特征提取研究
信息技术与网络安全
郭闽榕
(福州大学 数学与计算机科学学院,福建 福州350000)
摘要: 基于运动想象脑电信号的脑-机接口系统在医疗领域具有广阔的应用前景,被应用于运动障碍人士的辅助控制以及脑卒的预后康复。由于运动想象的脑电信号信噪比低、不平稳以及差异性显著,对脑电信号识别带来负面影响。一个有效的特征提取算法能够提高脑-机系统的脑电信号识别率。提出一种多通道的脑电信号特征提取方法,将数据矩阵分解为基矩阵与系数矩阵的乘积,以类间离散度做为性能判据对系数矩阵进行特征提取,提取可分性更高、维数更少的特征。结合脑电信号识别领域常见的分类器在2008年BCI竞赛数据集上进行验证,证明所提方法是有效的。
中圖分類(lèi)號(hào): TP391.4
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.01.011
引用格式: 郭閩榕。 基于運(yùn)動(dòng)想象的腦電信號(hào)特征提取研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(1):62-66.
Feature extraction of EEG signals based on motor imagery Guo Minrong
Guo Minrong
(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350000,China)
Abstract: The brain-computer interface(BCI) system based on motor imagery(MI) electroencephalogram(EEG) has a broad application prospect in the medical field, which can be applied to the auxiliary control of the disabled and the prognosis and rehabilitation of the brain.Because of the low SNR, instability and significant difference of EEG signal in motion imagination, it has a negative effect on EEG signal recognition.An effective feature extraction method can enhance the accuracy of EEG in BCI system. In this paper, a multi-channel feature extraction method for EEG signals is proposed.First of all,the data matrix is decomposed into the product of the basis matrix and the coefficient matrix.Then the coefficient matrix is extracted by using the inter-class dispersion as the performance criterion to extract the features with higher separability and less dimension.The experiment of BCI 2008 competition data set shows that the method is effective.
Key words : brain-computer interface;electroencephalogram;motor imagery;feature extraction;matrix decomposition

0     引言

  腦-機(jī)接口[1](Brain-Computer Interface,BCI)系統(tǒng)是一種不需要任何外部肌肉活動(dòng)的通信系統(tǒng),能夠?qū)⒋竽X活動(dòng)產(chǎn)生的腦信號(hào)轉(zhuǎn)化為對(duì)電子設(shè)備的指令。運(yùn)動(dòng)想象(Motor Imagery,MI)是腦-機(jī)接口領(lǐng)域的一大研究熱點(diǎn),有神經(jīng)功能障礙、運(yùn)動(dòng)障礙的人可以通過(guò)大腦控制假肢[2],也能夠應(yīng)用于腦卒等疾病的預(yù)后康復(fù)中[3],提高患者的恢復(fù)效果。此外,基于運(yùn)動(dòng)想象的腦-機(jī)接口系統(tǒng)還被應(yīng)用于游戲領(lǐng)域[4],為健康用戶提供娛樂(lè)新方式。

  記錄腦活動(dòng)的方式多種多樣,由于采集設(shè)備價(jià)格較低、無(wú)侵入性、高分辨率等優(yōu)點(diǎn),基于腦電(Elec-troencephalogram,EEG)信號(hào)的BCI系統(tǒng)的應(yīng)用最為廣泛。在采集數(shù)據(jù)時(shí),由于EEG信號(hào)是通過(guò)放置在頭皮上的導(dǎo)聯(lián)采集的,腦信號(hào)要經(jīng)過(guò)大腦顱骨和皮膚才能到達(dá)頭皮,還會(huì)受到眼電、肌電、心電和周邊環(huán)境的影響,故信噪比較低。






本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003319






作者信息:

郭閩榕

(福州大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州350000)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容