《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 自動(dòng)化構(gòu)建移動(dòng)端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究
自動(dòng)化構(gòu)建移動(dòng)端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究
2020年電子技術(shù)應(yīng)用第12期
宋存洋,李 欣
中國(guó)電子科技集團(tuán)公司第二十八研究所,江蘇 南京210007
摘要: 深度學(xué)習(xí)已在視覺(jué)、語(yǔ)音、自然語(yǔ)言等應(yīng)用領(lǐng)域取得巨大成功,然而隨著網(wǎng)絡(luò)結(jié)構(gòu)日趨復(fù)雜,神經(jīng)網(wǎng)絡(luò)參數(shù)量也迅速增長(zhǎng),設(shè)計(jì)網(wǎng)絡(luò)結(jié)構(gòu)和調(diào)節(jié)參數(shù)這一過(guò)程需要大量的專(zhuān)業(yè)知識(shí)與反復(fù)試驗(yàn),成本極高。此外,由于功耗限制與存儲(chǔ)空間等因素,移動(dòng)端設(shè)備上的神經(jīng)網(wǎng)絡(luò)模型規(guī)模受限。設(shè)計(jì)了一種高效的移動(dòng)端神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索算法,具體包括:(1)設(shè)計(jì)了一種在預(yù)先給定神經(jīng)網(wǎng)絡(luò)架構(gòu)的情況下可以自動(dòng)計(jì)算模型浮點(diǎn)數(shù)運(yùn)算次數(shù)的算法;(2)改進(jìn)現(xiàn)有的基于梯度的神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索算法,設(shè)計(jì)了一種帶約束的架構(gòu)搜索算法;(3)在神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索過(guò)程中加入對(duì)浮點(diǎn)數(shù)運(yùn)算次數(shù)的約束,通過(guò)調(diào)節(jié)約束的強(qiáng)弱搜索到幾種不同的神經(jīng)網(wǎng)絡(luò)架構(gòu)。訓(xùn)練搜索到的神經(jīng)網(wǎng)絡(luò),測(cè)試其在圖像分類(lèi)任務(wù)上的性能,并與工業(yè)界常用的模型相比較。實(shí)驗(yàn)結(jié)果表明,該方法搜索到的模型能達(dá)到目前工業(yè)界主流模型性能。
中圖分類(lèi)號(hào): TN919.3+1
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200835
中文引用格式: 宋存洋,李欣. 自動(dòng)化構(gòu)建移動(dòng)端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究[J].電子技術(shù)應(yīng)用,2020,46(12):83-88.
英文引用格式: Song Cunyang,Li Xin. Research on the technology of automatic construction of mobile terminal neural networks[J]. Application of Electronic Technique,2020,46(12):83-88.
Research on the technology of automatic construction of mobile terminal neural networks
Song Cunyang,Li Xin
The 28th Research Institute of China Electronics Technology Corporation,Nanjing 210007,China
Abstract: Deep learning has achieved great success in many areas such as computer vision, speech signal processing and natural language processing. However, as the neural architecture becomes more complex, the number of parameters increases rapidly. Designing efficient neural architectures requires expertise knowledge and quantities of repetitive experiments, which leads to high cost. Besides, the scale of neural networks running in mobile devices is strictly limited due to the power consumption limit and relatively small storage space. This paper proposes an efficient architecture searching algorithm for mobile devices. The main contributions include:(1)We propose an algorithm for calculating the number of floating point operations in neural networks under given architecture.(2)We improve an existing gradient based neural architecture search algorithm and propose a constraint NAS algorithm.(3)We search several efficient neural architectures by adding the constraint of the number of floating point operations to the architecture searching process and adjusting its strength. We train the searched neural networks, test their performance on image classification tasks and compare with other neural networks which are commonly used in industry. The experimental results show that the performance of the model searched by our method can reach the performance of mainstream models in industry.
Key words : lightweight neural network;convolution;model constraint;neural architecture search

0 引言

    自AlexNet以巨大的優(yōu)勢(shì)在ImageNet圖像識(shí)別比賽中奪冠后,深度學(xué)習(xí)在視覺(jué)、語(yǔ)音、自然語(yǔ)言處理等方面取得了飛速的進(jìn)展和巨大的成功。深度學(xué)習(xí)發(fā)展主要依賴(lài)于算力的提升和算法的進(jìn)步。算力的提升主要在于GPU、TPU等硬件的應(yīng)用與發(fā)展;而算法的進(jìn)步多種多樣,例如優(yōu)化方法的改進(jìn)、激活函數(shù)的選擇等。本文主要關(guān)注于使用神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索的方法構(gòu)建輕量級(jí)神經(jīng)網(wǎng)絡(luò),主要工作包括:

    (1)設(shè)計(jì)了一種自動(dòng)計(jì)算模型浮點(diǎn)數(shù)運(yùn)算次數(shù)的算法。浮點(diǎn)數(shù)運(yùn)算次數(shù)是反映神經(jīng)網(wǎng)絡(luò)規(guī)模與運(yùn)行速度的一個(gè)重要指標(biāo),也是一個(gè)動(dòng)態(tài)的過(guò)程,可以看作架構(gòu)參數(shù)的函數(shù),除了具體的數(shù)值外,本文還計(jì)算了其對(duì)架構(gòu)參數(shù)的偏導(dǎo)數(shù)。

    (2)基于梯度的神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索,改進(jìn)設(shè)計(jì)了一種帶約束的架構(gòu)搜索方法。在實(shí)際任務(wù)中,為了使模型能運(yùn)行在特定設(shè)備上,通常對(duì)模型的規(guī)?;蜻\(yùn)行速度等有一定的要求。不加約束的搜索,得到的模型很可能不滿足要求。本文實(shí)現(xiàn)的約束算法并不限于某一種特定約束,而是實(shí)現(xiàn)了一種接口,加入了對(duì)模型運(yùn)行時(shí)延、模型規(guī)模多種不同的約束。

    (3)利用帶有浮點(diǎn)數(shù)運(yùn)算次數(shù)約束的架構(gòu)搜索算法,搜索到幾種高性能神經(jīng)網(wǎng)絡(luò)架構(gòu)。在幾個(gè)公開(kāi)數(shù)據(jù)集上測(cè)試并對(duì)比其在圖像分類(lèi)任務(wù)上的準(zhǔn)確率,并與工業(yè)界常用的神經(jīng)網(wǎng)絡(luò)模型進(jìn)行比較。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003259




作者信息:

宋存洋,李  欣

(中國(guó)電子科技集團(tuán)公司第二十八研究所,江蘇 南京210007)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。