《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 自動化構(gòu)建移動端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究
自動化構(gòu)建移動端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究
2020年電子技術(shù)應(yīng)用第12期
宋存洋,李 欣
中國電子科技集團公司第二十八研究所,江蘇 南京210007
摘要: 深度學習已在視覺、語音、自然語言等應(yīng)用領(lǐng)域取得巨大成功,然而隨著網(wǎng)絡(luò)結(jié)構(gòu)日趨復雜,神經(jīng)網(wǎng)絡(luò)參數(shù)量也迅速增長,設(shè)計網(wǎng)絡(luò)結(jié)構(gòu)和調(diào)節(jié)參數(shù)這一過程需要大量的專業(yè)知識與反復試驗,成本極高。此外,由于功耗限制與存儲空間等因素,移動端設(shè)備上的神經(jīng)網(wǎng)絡(luò)模型規(guī)模受限。設(shè)計了一種高效的移動端神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索算法,具體包括:(1)設(shè)計了一種在預(yù)先給定神經(jīng)網(wǎng)絡(luò)架構(gòu)的情況下可以自動計算模型浮點數(shù)運算次數(shù)的算法;(2)改進現(xiàn)有的基于梯度的神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索算法,設(shè)計了一種帶約束的架構(gòu)搜索算法;(3)在神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索過程中加入對浮點數(shù)運算次數(shù)的約束,通過調(diào)節(jié)約束的強弱搜索到幾種不同的神經(jīng)網(wǎng)絡(luò)架構(gòu)。訓練搜索到的神經(jīng)網(wǎng)絡(luò),測試其在圖像分類任務(wù)上的性能,并與工業(yè)界常用的模型相比較。實驗結(jié)果表明,該方法搜索到的模型能達到目前工業(yè)界主流模型性能。
中圖分類號: TN919.3+1
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200835
中文引用格式: 宋存洋,李欣. 自動化構(gòu)建移動端神經(jīng)網(wǎng)絡(luò)的技術(shù)研究[J].電子技術(shù)應(yīng)用,2020,46(12):83-88.
英文引用格式: Song Cunyang,Li Xin. Research on the technology of automatic construction of mobile terminal neural networks[J]. Application of Electronic Technique,2020,46(12):83-88.
Research on the technology of automatic construction of mobile terminal neural networks
Song Cunyang,Li Xin
The 28th Research Institute of China Electronics Technology Corporation,Nanjing 210007,China
Abstract: Deep learning has achieved great success in many areas such as computer vision, speech signal processing and natural language processing. However, as the neural architecture becomes more complex, the number of parameters increases rapidly. Designing efficient neural architectures requires expertise knowledge and quantities of repetitive experiments, which leads to high cost. Besides, the scale of neural networks running in mobile devices is strictly limited due to the power consumption limit and relatively small storage space. This paper proposes an efficient architecture searching algorithm for mobile devices. The main contributions include:(1)We propose an algorithm for calculating the number of floating point operations in neural networks under given architecture.(2)We improve an existing gradient based neural architecture search algorithm and propose a constraint NAS algorithm.(3)We search several efficient neural architectures by adding the constraint of the number of floating point operations to the architecture searching process and adjusting its strength. We train the searched neural networks, test their performance on image classification tasks and compare with other neural networks which are commonly used in industry. The experimental results show that the performance of the model searched by our method can reach the performance of mainstream models in industry.
Key words : lightweight neural network;convolution;model constraint;neural architecture search

0 引言

    自AlexNet以巨大的優(yōu)勢在ImageNet圖像識別比賽中奪冠后,深度學習在視覺、語音、自然語言處理等方面取得了飛速的進展和巨大的成功。深度學習發(fā)展主要依賴于算力的提升和算法的進步。算力的提升主要在于GPU、TPU等硬件的應(yīng)用與發(fā)展;而算法的進步多種多樣,例如優(yōu)化方法的改進、激活函數(shù)的選擇等。本文主要關(guān)注于使用神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索的方法構(gòu)建輕量級神經(jīng)網(wǎng)絡(luò),主要工作包括:

    (1)設(shè)計了一種自動計算模型浮點數(shù)運算次數(shù)的算法。浮點數(shù)運算次數(shù)是反映神經(jīng)網(wǎng)絡(luò)規(guī)模與運行速度的一個重要指標,也是一個動態(tài)的過程,可以看作架構(gòu)參數(shù)的函數(shù),除了具體的數(shù)值外,本文還計算了其對架構(gòu)參數(shù)的偏導數(shù)。

    (2)基于梯度的神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索,改進設(shè)計了一種帶約束的架構(gòu)搜索方法。在實際任務(wù)中,為了使模型能運行在特定設(shè)備上,通常對模型的規(guī)?;蜻\行速度等有一定的要求。不加約束的搜索,得到的模型很可能不滿足要求。本文實現(xiàn)的約束算法并不限于某一種特定約束,而是實現(xiàn)了一種接口,加入了對模型運行時延、模型規(guī)模多種不同的約束。

    (3)利用帶有浮點數(shù)運算次數(shù)約束的架構(gòu)搜索算法,搜索到幾種高性能神經(jīng)網(wǎng)絡(luò)架構(gòu)。在幾個公開數(shù)據(jù)集上測試并對比其在圖像分類任務(wù)上的準確率,并與工業(yè)界常用的神經(jīng)網(wǎng)絡(luò)模型進行比較。




本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000003259




作者信息:

宋存洋,李  欣

(中國電子科技集團公司第二十八研究所,江蘇 南京210007)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。