基于云平台的压砖设备健康状态分析方法设计
2020年信息技术与网络安全第10期
李晓昌1,徐哲壮1,谢仁栩1,王 毅1,刘 兴1,王宏飞1,夏玉雄2
1.福州大学 电气工程与自动化学院,福建 福州350108; 2.福建华鼎智造技术有限公司,福建 福州350003
摘要: 基于运行数据对压砖设备健康状态进行分析,对于降低设备故障率、提升压砖成品质量具有重要意义。现有方案大多数局限于离线人工分析,实时性差且推广效率低。针对上述问题,基于阿里云机器学习平台设计了压砖设备健康状态分析方法,基于聚类方法构建了压砖设备健康状态模型,在无需先验知识的情况下,对于压砖设备的工作、待机、异常等健康状态实现了建模。进而,将该模型部署于云计算平台上,通过周期性的数据导入与分析实现了压砖设备健康状态的在线分析。最后通过实例证明了该方法的有效性。
中圖分類號: TP393
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.10.012
引用格式: 李曉昌,徐哲壯,謝仁栩,等. 基于云平臺的壓磚設備健康狀態(tài)分析方法設計[J].信息技術與網絡安全,2020,39(10):61-66.
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.10.012
引用格式: 李曉昌,徐哲壯,謝仁栩,等. 基于云平臺的壓磚設備健康狀態(tài)分析方法設計[J].信息技術與網絡安全,2020,39(10):61-66.
Design of health status analysis method for brick pressing machine based on cloud platform
Li Xiaochang1,Xu Zhezhuang1,Xie Renxu1,Wang Yi1,Liu Xing1,Wang Hongfei1,Xia Yuxiong2
1.School of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China; 2.Fujian Huading Intelligent Manufacturing Technology Co.,Ltd.,Fuzhou 350003,China
Abstract: The analysis of the health status of the brick pressing machine based on the operating data is of great significance for reducing the failure rate of the machine and improving the quality of the finished brick press. Most existing solutions are limited to offline manual analysis, which has poor real-time performance and low promotion efficiency. In response to the above problems, this paper designed an analysis method of the health status of brick press machine based on the Alibaba Cloud machine learning platform. Based on the clustering method, the health state model of the brick press machine was constructed. Without prior knowledge, the health status of the brick press machine such as work, standby, and abnormality was modeled. Furthermore, the model was deployed on a cloud computing platform, and the online analysis of the health status of brick press machine was realized through periodic data import and analysis. An example was provided to prove the effectiveness of the proposed method.
Key words : machine health status analysis;industrial big data;machine learning;cloud platform;brick pressing machine
0 引言
工業(yè)設備的健康狀態(tài)對于生產流程的穩(wěn)定性與可靠性具有重要作用,單個設備故障會導致整條生產線停產,造成巨大的經濟損失。因此,基于運行數據對工業(yè)設備健康狀態(tài)進行分析,對于降低設備故障率、提升產品質量具有重要意義[1-3]。目前我國壓磚產業(yè)已具備較大規(guī)模,新型壓磚設備已能夠通過工業(yè)物聯網模塊采集設備運行數據。但現有數據主要限于售后維護時使用,大量實時累計的運行數據并沒有得到有效利用。另一方面,現有數據分析方案大多仍局限于離線人工分析,實時性差且推廣效率低。因此,利用云平臺[4-5]和機器學習技術[6-7]對設備健康狀態(tài)進行在線分析已成為迫切需求[8]。
針對上述需求,本文基于阿里云機器學習平臺設計了壓磚設備健康狀態(tài)分析方法,構建了壓磚設備數據聚類分析模型,在無需專家先驗知識的情況下,完成了壓磚設備的工作、待機、異常等健康狀態(tài)的建模。進一步地,通過將訓練好的壓磚設備健康狀態(tài)模型部署至DataWorks平臺,同時周期性地從保存壓磚設備實時運行數據的MySQL數據庫導出數據至該平臺進行分析計算,實現了對壓磚設備健康狀態(tài)的在線分析。最后,本文通過實例證明了該方法的有效性。
本文詳細內容請下載:http://ihrv.cn/resource/share/2000003142
作者信息:
李曉昌1,徐哲壯1,謝仁栩1,王 毅1,劉 興1,王宏飛1,夏玉雄2
(1.福州大學 電氣工程與自動化學院,福建 福州350108;
2.福建華鼎智造技術有限公司,福建 福州350003)
此內容為AET網站原創(chuàng),未經授權禁止轉載。
