《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 多特征融合及最小均方誤差優(yōu)化的陰影檢測(cè)
多特征融合及最小均方誤差優(yōu)化的陰影檢測(cè)
2018年電子技術(shù)應(yīng)用第10期
張 涵1,閆懷平1,張 展2
1.安陽(yáng)工學(xué)院 計(jì)算機(jī)科學(xué)與信息工程,河南 安陽(yáng)455000;2.河南理工大學(xué) 電氣學(xué)院,河南 焦作454000
摘要: 為降低陰影對(duì)運(yùn)動(dòng)目標(biāo)檢測(cè)結(jié)果的干擾,提出了一種陰影檢測(cè)方法,作為運(yùn)動(dòng)偵測(cè)方法的后處理步驟。在運(yùn)動(dòng)偵測(cè)檢測(cè)到的目標(biāo)列表的基礎(chǔ)上,該方法針對(duì)R、G、B 3個(gè)顏色通道提取相鄰幀之間像素點(diǎn)的亮度、對(duì)比度和結(jié)構(gòu)特征,融合這3類(lèi)特征生成相似度度量,并依據(jù)最小均方誤差準(zhǔn)則設(shè)計(jì)目標(biāo)函數(shù),通過(guò)最優(yōu)化方法求解最佳的像素點(diǎn)分割閾值,檢測(cè)并消除運(yùn)動(dòng)偵測(cè)目標(biāo)中的陰影像素點(diǎn)。陰影檢測(cè)實(shí)驗(yàn)在Changedetection.net數(shù)據(jù)集的shadow數(shù)據(jù)子集進(jìn)行。實(shí)驗(yàn)結(jié)果表明,該方法的陰影檢測(cè)率高,檢測(cè)耗時(shí)少。
中圖分類(lèi)號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.174639
中文引用格式: 張涵,閆懷平,張展. 多特征融合及最小均方誤差優(yōu)化的陰影檢測(cè)[J].電子技術(shù)應(yīng)用,2018,44(10):153-157.
英文引用格式: Zhang Han,Yan Huaiping,Zhang Zhan. Shadow detection with multi-feature fusion and MMSE optimization[J]. Application of Electronic Technique,2018,44(10):153-157.
Shadow detection with multi-feature fusion and MMSE optimization
Zhang Han1,Yan Huaiping1,Zhang Zhan2
1.School of Computer Science and Information Engineering,Anyang Institute of Technology,Anyang 455000,China; 2.School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
Abstract: In order to reduce the interference of shadow to detection results of moving targets, a shadow detection method is proposed, which can be made as the post-processing step of motion detection methods. On the basis of the target list detected by motion detection methods, this method extracts the brightness, contrast and structural features of the pixels between adjacent frames for the three color channels R, G and B, and fuses the three types of features to generate the similarity measure. And the objective function is designed according to the MMSE(minimum mean square error) criterion. The optimal pixel segmentation thresholds are obtained by the optimal solution, to detect and eliminate the shadow pixels in the motion detection targets. The shadow detection experiments are carried out on the shadow subset of Changedetection.net dataset. The experimental results show that this method has high detection rate and low detection time.
Key words : shadow detection;motion detection;minimum mean square error;optimization;multi-feature fusion

0 引言

    運(yùn)動(dòng)偵測(cè)是視頻分析與理解的基礎(chǔ)研究課題,通過(guò)運(yùn)動(dòng)偵測(cè)可以將目標(biāo)與背景分離開(kāi)來(lái),為后續(xù)目標(biāo)的分析與理解奠定基礎(chǔ)。因此,運(yùn)動(dòng)偵測(cè)常作為視頻分析的預(yù)處理過(guò)程,在視頻分析時(shí),先對(duì)視頻進(jìn)行運(yùn)動(dòng)偵測(cè),然后再對(duì)分離出的目標(biāo)進(jìn)行深一層的分析理解。運(yùn)動(dòng)偵測(cè)的方法很多,通??梢苑譃?類(lèi):幀差法、背景差法和光流法[1]。總的來(lái)說(shuō),光流法在視頻監(jiān)控領(lǐng)域應(yīng)用很少,因?yàn)樵摲椒ǖ膹?fù)雜度高,無(wú)法滿足視頻監(jiān)控系統(tǒng)對(duì)時(shí)效性的要求。幀差法和背景差法在視頻監(jiān)控領(lǐng)域都有廣泛應(yīng)用。其中,幀差法的運(yùn)算效率一般高于背景差法。但是,幀差法對(duì)目標(biāo)的運(yùn)動(dòng)速度比較敏感,如果目標(biāo)走走停停,那么采用幀差法存在丟失運(yùn)動(dòng)目標(biāo)的可能。而且,幀差法對(duì)像素顏色值的變化非常敏感,在處理動(dòng)態(tài)背景、光照變化和陰影問(wèn)題時(shí)都存在明顯不足。背景差法通過(guò)訓(xùn)練背景模型可以適應(yīng)動(dòng)態(tài)背景的變化以及光照的變化,提升運(yùn)動(dòng)目標(biāo)檢測(cè)的魯棒性,應(yīng)用也最廣泛。該方法的關(guān)鍵是建立合適的背景模型,常用的背景建模方法有單高斯模型、混合高斯模型、自組織背景模型、貝葉斯模型等[2-6]。盡管通過(guò)構(gòu)建背景模型可以提高背景對(duì)環(huán)境變化的適應(yīng)能力,但是,在實(shí)際應(yīng)用中運(yùn)動(dòng)目標(biāo)檢測(cè)還會(huì)受到陰影干擾,因?yàn)橛白邮桥c目標(biāo)相關(guān)聯(lián)的,無(wú)法通過(guò)建模來(lái)消除。對(duì)于視頻監(jiān)控系統(tǒng)中的許多應(yīng)用,陰影檢測(cè)是提高運(yùn)動(dòng)目標(biāo)檢測(cè)精度的重要環(huán)節(jié),是運(yùn)動(dòng)偵測(cè)方法的重要補(bǔ)充[7-10]。目前,陰影檢測(cè)方面也涌現(xiàn)出了不少研究成果。如文獻(xiàn)[9]提出了一種多特征融合陰影檢測(cè)方法,融合了光照強(qiáng)度、色度和紋理3個(gè)特征來(lái)檢測(cè)陰影,使用灰度形態(tài)濾波消除陰影。文獻(xiàn)[10]使用離散小波變換檢測(cè)陰影,借助小波變換的多分辨率屬性,將圖像分解成4個(gè)不同的頻帶,以相對(duì)標(biāo)準(zhǔn)偏差準(zhǔn)則計(jì)算自適應(yīng)分割閾值,檢測(cè)和消除陰影。然而,現(xiàn)有陰影檢測(cè)方法還存在過(guò)檢測(cè)(將目標(biāo)像素點(diǎn)檢測(cè)為陰影像素點(diǎn))和欠檢測(cè)(將陰影像素點(diǎn)檢測(cè)為目標(biāo)像素點(diǎn))問(wèn)題,檢測(cè)精度還有待提高。

    為了解決這一問(wèn)題,本文提出了一種多特征融合及最小均方誤差優(yōu)化的陰影檢測(cè)方法。該方法的主要貢獻(xiàn)有兩個(gè)方面:(1)在相似度度量計(jì)算部分,該方法針對(duì)R、G、B 3個(gè)顏色通道提取相鄰幀之間像素點(diǎn)的亮度、對(duì)比度和結(jié)構(gòu)特征,融合這3類(lèi)特征生成相似度度量,提高相似性度量對(duì)環(huán)境干擾的魯棒性;(2)在分割閾值求解部分,該方法引入最優(yōu)化理論,依據(jù)最小均方誤差準(zhǔn)則設(shè)計(jì)目標(biāo)函數(shù),通過(guò)最優(yōu)化方法求解最佳的像素點(diǎn)分割閾值。

    通過(guò)這兩個(gè)方面的創(chuàng)新,該方法可以有效檢測(cè)并消除運(yùn)動(dòng)偵測(cè)目標(biāo)中的陰影像素點(diǎn)。

1 運(yùn)動(dòng)偵測(cè)概述

    在視頻監(jiān)控領(lǐng)域,考慮系統(tǒng)對(duì)運(yùn)動(dòng)偵測(cè)方法運(yùn)算效率的要求,通常采用幀差法和背景差法兩類(lèi)運(yùn)動(dòng)偵測(cè)方法進(jìn)行運(yùn)動(dòng)目標(biāo)的檢測(cè),簡(jiǎn)要描述如下[11-12]。

1.1 幀差法

    幀差法也稱(chēng)為時(shí)間差分法,該方法利用視頻中不同幀之間的差異來(lái)檢測(cè)運(yùn)動(dòng)目標(biāo)。常用的是三幀差法,通過(guò)對(duì)相鄰的3幀圖像進(jìn)行差分運(yùn)算,檢測(cè)視頻中的運(yùn)動(dòng)目標(biāo)。該方法主要包括3個(gè)步驟:幀間差分、二值分割和“與”運(yùn)算。

    (1)幀間差分

    計(jì)算第k幀圖像與前面間隔分別為Δk和2Δk的兩幀圖像之間的差分圖像,記為:

jsj6-gs1-4.gif

其中,Tcol為對(duì)應(yīng)顏色通道上設(shè)置的分割閾值,該閾值通常為一全局量,可以自適應(yīng)求解。

    (3)“與”運(yùn)算

    將兩幅二值圖像進(jìn)行“與”運(yùn)算,可以剔除“鬼影”和噪聲干擾,得到最終的運(yùn)動(dòng)目標(biāo)檢測(cè)結(jié)果,表示為:

    jsj6-gs5.gif

其中,“&”表示“與”運(yùn)算。

    幀差法的優(yōu)點(diǎn)是計(jì)算量小,對(duì)運(yùn)動(dòng)很敏感。但缺點(diǎn)是受目標(biāo)運(yùn)動(dòng)速度影響,而且對(duì)于環(huán)境光照變化和動(dòng)態(tài)背景也過(guò)于敏感。

1.2 背景差法

jsj6-gs6-7.gif

2 陰影檢測(cè)

    運(yùn)動(dòng)偵測(cè)除了檢測(cè)運(yùn)動(dòng)目標(biāo)之外,還會(huì)將目標(biāo)的影子檢測(cè)出來(lái)。因此,需要采用陰影檢測(cè)方法檢測(cè)影子并去除。本文提出一種陰影檢測(cè)方法是對(duì)運(yùn)動(dòng)偵測(cè)方法的補(bǔ)充,也可以說(shuō)是一個(gè)后處理過(guò)程。具體地,對(duì)于每一幀圖像,運(yùn)動(dòng)偵測(cè)后可以得到一幅目標(biāo)二值掩膜圖像。其中,值為255的像素點(diǎn)為目標(biāo),其他像素點(diǎn)為背景。本文以目標(biāo)像素點(diǎn)為研究對(duì)象,先進(jìn)行連通域搜索,得到二值圖像中的目標(biāo)列表。然后對(duì)每一個(gè)目標(biāo)進(jìn)行陰影檢測(cè),判斷該目標(biāo)是否存在陰影像素點(diǎn)。如果存在陰影點(diǎn),則將這些像素點(diǎn)置為背景像素點(diǎn),從而降低陰影對(duì)運(yùn)動(dòng)偵測(cè)的干擾。本文所述陰影檢測(cè)方法依據(jù)相鄰幀之間像素點(diǎn)的亮度、對(duì)比度和結(jié)構(gòu)的多特征融合生成相似度度量,依據(jù)最小均方誤差準(zhǔn)則尋找最優(yōu)解,生成像素點(diǎn)為目標(biāo)或者背景的最終判決,剔除前述運(yùn)動(dòng)偵測(cè)階段生成的二值掩膜中的陰影像素點(diǎn),實(shí)現(xiàn)流程如圖1所示。

jsj6-t1.gif

2.1 目標(biāo)列表構(gòu)建

    運(yùn)動(dòng)偵測(cè)得到一幅二值圖像,將每一幀圖像上的像素點(diǎn)分為兩類(lèi),即目標(biāo)像素點(diǎn)和背景像素點(diǎn)。本文先對(duì)二值圖像中的目標(biāo)像素點(diǎn)進(jìn)行8鄰域連通域搜索,每一個(gè)連通域?qū)?yīng)一個(gè)目標(biāo),這樣構(gòu)建一個(gè)目標(biāo)列表,該目標(biāo)列表包含當(dāng)前幀中每一個(gè)目標(biāo)的外接矩形框和二值掩膜。

    記第i個(gè)目標(biāo)的外接矩形框?yàn)椋?/p>

jsj6-gs8-9.gif

    下面針對(duì)目標(biāo)列表中的每一個(gè)目標(biāo)進(jìn)行陰影檢測(cè)。

2.2 多特征融合相似度度量

    前述的運(yùn)動(dòng)偵測(cè)主要依據(jù)像素點(diǎn)不同顏色通道上亮度的變化來(lái)檢測(cè)變化區(qū)域。事實(shí)上,光照等環(huán)境干擾引起的陰影現(xiàn)象也會(huì)導(dǎo)致像素點(diǎn)的亮度發(fā)生變化。因此,陰影像素點(diǎn)可能會(huì)被誤檢為目標(biāo)像素點(diǎn)。而且,運(yùn)動(dòng)偵測(cè)節(jié)點(diǎn)亮度變化的閾值選擇通常是針對(duì)整幅圖像的,而事實(shí)上場(chǎng)景中不同位置的亮度一般存在較大差異,也即亮度不均勻。因此,相同的閾值可能不適合不同位置的目標(biāo)的運(yùn)動(dòng)偵測(cè)。為了解決這一問(wèn)題,本文對(duì)運(yùn)動(dòng)偵測(cè)得到的二值目標(biāo)掩膜再進(jìn)行一次判決。這里,需要對(duì)每一個(gè)目標(biāo)的二值掩膜區(qū)域構(gòu)建一個(gè)相似度度量,降低圖像整體亮度不均勻?qū)Ψ指铋撝涤?jì)算的影響。

    本文針對(duì)R、G、B 3個(gè)顏色通道提取相鄰幀之間像素點(diǎn)的亮度、對(duì)比度和結(jié)構(gòu)特征,融合這3類(lèi)特征生成相似度度量。對(duì)于第k幀圖像中第i個(gè)目標(biāo),其相似度度量可以表示為:

jsj6-gs10.gif

jsj6-gs11-16.gif

jsj6-gs17-19.gif

3 實(shí)驗(yàn)與分析

    下面通過(guò)實(shí)驗(yàn)分析來(lái)驗(yàn)證本文所述的陰影檢測(cè)方法的性能。首先,本文選擇Changedetection.net中的shadow子集作為測(cè)試數(shù)據(jù)集。該數(shù)據(jù)集是運(yùn)動(dòng)偵測(cè)領(lǐng)域的公開(kāi)測(cè)試數(shù)據(jù)集,目前大部分運(yùn)動(dòng)偵測(cè)算法都是在該數(shù)據(jù)集下進(jìn)行測(cè)試和評(píng)價(jià)的,具有權(quán)威性。shadow子集共包含了6個(gè)視頻圖像序列,分別是backdoor、bungalows、busStation、copyMachine、cubicle和peopleInShade。這些圖像序列的共同特點(diǎn)是都存在陰影干擾。本文針對(duì)這6個(gè)視頻圖像序列進(jìn)行仿真實(shí)驗(yàn),實(shí)驗(yàn)平臺(tái)為Intel I5臺(tái)式計(jì)算機(jī),內(nèi)存為16 GB,操作系統(tǒng)為Windows 7,軟件平臺(tái)為Visual Studio 2013。運(yùn)動(dòng)偵測(cè)方法采用的是文獻(xiàn)[6]所述方法。針對(duì)運(yùn)動(dòng)偵測(cè)的結(jié)果,采用本文所述陰影檢測(cè)方法和文獻(xiàn)[9]、[10]所述陰影檢測(cè)方法進(jìn)行陰影檢測(cè),去除陰影。通過(guò)對(duì)比3種陰影檢測(cè)方法的檢測(cè)結(jié)果來(lái)評(píng)價(jià)本文方法的性能。其中,本文方法中參數(shù)設(shè)置為:t1=t2=t3=1,Δk=1。

    圖2展示了3幅視頻幀圖像所對(duì)應(yīng)的Groundtruth以及采用3種陰影檢測(cè)方法得到的檢測(cè)結(jié)果??梢?jiàn),文獻(xiàn)[9]所述方法能夠消除部分陰影,但仍有明顯的陰影存在,存在欠檢測(cè)問(wèn)題。文獻(xiàn)[10]所述方法消除陰影的同時(shí)還消除了部分目標(biāo),存在過(guò)檢測(cè)問(wèn)題。而本文方法基本上能夠消除所有陰影,而且基本上沒(méi)有破壞目標(biāo),所得目標(biāo)檢測(cè)結(jié)果與Groundtruth最為接近。

jsj6-t2.gif

    為了定量評(píng)價(jià)本文陰影檢測(cè)方法的性能,本文采用檢測(cè)率和檢測(cè)耗時(shí)兩個(gè)指標(biāo)進(jìn)行性能評(píng)價(jià)。其中,檢測(cè)率表示為:

    jsj6-gs20.gif

其中,AS是指檢測(cè)到的陰影像素點(diǎn)的總數(shù),RS是指檢測(cè)正確的陰影像素點(diǎn)比例,由檢測(cè)正確的陰影像素點(diǎn)總數(shù)DS與實(shí)際陰影像素點(diǎn)總數(shù)NS的商來(lái)表示。DS具體指檢測(cè)到的陰影像素點(diǎn)中不屬于Groundtruth中目標(biāo)像素點(diǎn)的像素點(diǎn)總數(shù)。NS具體指運(yùn)動(dòng)偵測(cè)得到的目標(biāo)像素點(diǎn)中不屬于Groundtruth中目標(biāo)像素點(diǎn)的像素點(diǎn)總數(shù)。

    檢測(cè)耗時(shí)僅指陰影檢測(cè)所耗費(fèi)的時(shí)間,不包括運(yùn)動(dòng)偵測(cè)耗時(shí)。而且,檢測(cè)耗時(shí)統(tǒng)計(jì)的是平均耗時(shí),也即一幀圖像進(jìn)行陰影檢測(cè)所耗費(fèi)的平均時(shí)間。

    圖3具體給出了3種方法對(duì)于6個(gè)視頻圖像序列的陰影檢測(cè)率指標(biāo)對(duì)比結(jié)果??梢?jiàn),文獻(xiàn)[9]和文獻(xiàn)[10]所述方法的陰影檢測(cè)率指標(biāo)相當(dāng)。這是因?yàn)楸M管文獻(xiàn)[9]所述方法正確檢測(cè)的陰影像素點(diǎn)數(shù)量DS較文獻(xiàn)[10]所述方法偏少,但檢測(cè)到的陰影像素點(diǎn)總數(shù)AS也少于文獻(xiàn)[10]所述方法,所以最終得到的檢測(cè)率指標(biāo)相當(dāng)。而本文方法對(duì)每一個(gè)視頻圖像序列的陰影檢測(cè)率指標(biāo)都高于其他兩種方法,這是因?yàn)楸疚牟捎米顑?yōu)化理論尋找最優(yōu)解決方案,虛檢和漏檢的陰影像素點(diǎn)較少。

jsj6-t3.gif

    表1給出了3種陰影檢測(cè)方法對(duì)6個(gè)視頻圖像序列的檢測(cè)結(jié)果??梢?jiàn),本文方法的檢測(cè)正確率明顯優(yōu)于其他兩種方法,高出排在第二位文獻(xiàn)[9]所述方法17%。另外,3種方法的檢測(cè)耗時(shí)差異不大,本文方法的檢測(cè)耗時(shí)略高于文獻(xiàn)[9]所述方法,但低于文獻(xiàn)[10]所述方法。因此,綜合評(píng)價(jià),本文的陰影檢測(cè)方法優(yōu)于所對(duì)比的其他兩種陰影檢測(cè)方法。

jsj6-b1.gif

4 結(jié)束語(yǔ)

    本文提出了一種多特征融合及最小均方誤差優(yōu)化的陰影檢測(cè)方法,該方法以運(yùn)動(dòng)偵測(cè)檢測(cè)到的目標(biāo)為研究對(duì)象,設(shè)計(jì)了一種多特征融合的相似度度量,具體是針對(duì)R、G、B 3個(gè)顏色通道提取相鄰幀之間像素點(diǎn)的亮度、對(duì)比度和結(jié)構(gòu)特征,融合這3類(lèi)特征的均值、方差和協(xié)方差生成相似度度量;同時(shí),設(shè)計(jì)了一種基于最優(yōu)化理論的分割閾值自適應(yīng)求解方法,依據(jù)最小均方誤差準(zhǔn)則設(shè)計(jì)目標(biāo)函數(shù),通過(guò)最優(yōu)化方法求解最佳的像素點(diǎn)分割閾值。該方法可以作為光流法、幀差法和背景差法等運(yùn)動(dòng)偵測(cè)方法的后處理步驟,能夠有效檢測(cè)并消除運(yùn)動(dòng)偵測(cè)目標(biāo)中的陰影像素點(diǎn)。

參考文獻(xiàn)

[1] BEHNIA R,CLARK D A,CARTER A G,et al.Processing properties of on and off pathways for drosophila motion detection[J].Nature,2014,512(7515):427-30.

[2] SHINOMIYA K,KARUPPUDURAI T,LIN T Y,et al.Candidate neural substrates for off-edge motion detection in drosophila[J].Current Biology,2014,24(10):1062-70.

[3] OHTA N,KANATANI K,KIMURA K.Moving object detection from optical flow without empirical thresholds[J].IEICE Transactions on Information & Systems,2015,81(2):243-245.

[4] NAKAMURA M,KANEOKE Y,WATANABE K,et al.Visual information process in Williams syndrome:intact motion detection accompanied by typical visuospatial dysfunctions[J].European Journal of Neuroscience,2015,16(9):1810-1818.

[5] LEE J H,YANG D,KIM S,et al.Stretchable strain sensor based on metal nanoparticle thin film for human motion detection & flexible pressure sensing devices[J].Nanoscale,2014,6(20):11932.

[6] 余燁,曹明偉,岳峰.EVibe:一種改進(jìn)的Vibe運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J].儀器儀表學(xué)報(bào),2014,35(4):924-931.

[7] 姜建國(guó),李婷,楊玲敏,等.c3通道高分辨率遙感圖像陰影檢測(cè)算法的改進(jìn)[J].計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),2015,27(8):1490-1497.

[8] 段志剛,屈靚瓊,田建東,等.基于正交分解的室外光照陰影檢測(cè)[J].光學(xué)學(xué)報(bào),2016(8):201-209.

[9] CHEN W.Moving shadow detection based on multi-feature analysis and gray-scale morphological filtering[J].Journal of Information & Computational Science,2014,11(8):2535-2542.

[10] KHARE M,SRIVASTAVA R K,KHARE A.Moving shadow detection and removal-a wavelet transform based approach[J].Computer Vision IET,2014,8(6):701-717.

[11] 蔡念,周楊,劉根,等.魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)綜述[J].中國(guó)圖象圖形學(xué)報(bào),2016,21(10):1265-1275.

[12] 田合雷,丁勝,于長(zhǎng)偉,等.監(jiān)控視頻中的移動(dòng)目標(biāo)偵測(cè)算法研究[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2015(12):1639-1642.



作者信息:

張  涵1,閆懷平1,張  展2

(1.安陽(yáng)工學(xué)院 計(jì)算機(jī)科學(xué)與信息工程,河南 安陽(yáng)455000;2.河南理工大學(xué) 電氣學(xué)院,河南 焦作454000)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。