《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 業(yè)界動態(tài) > 摩爾定律已死,AI萬歲!

摩爾定律已死,AI萬歲!

2018-07-21
關(guān)鍵詞: 摩爾定律 半導(dǎo)體 電晶體

摩爾定律已死,人工智能萬歲!」(Moore's Law is dead, long live AI.)。這是半導(dǎo)體產(chǎn)業(yè)最近的一個新口號,就從日前于美國西部半導(dǎo)體展(Semicon West 2018)中一場由應(yīng)用材料(Applied Materials)贊助的全天活動上響起。


應(yīng)材新市場與聯(lián)盟事業(yè)群資深副總裁Steve Ghanayem表示,「半導(dǎo)體制程節(jié)點的時代列車即將邁入尾聲。接下來,從材料到元件——硬體、軟體與系統(tǒng)——都必須以全新途徑展開更多的合作?!筍teve Ghanayem原來負責(zé)應(yīng)材的電晶體和互連部門,目前則致力于尋找收購和結(jié)盟的機會,協(xié)助該公司朝向摩爾定律(Moore's Law)以外的方向進展。


當(dāng)然,摩爾定律還沒有完全消失;對于幾家公司來說,朝向更小型芯片的競賽也仍持續(xù)進行中。


在Semicon West的專題演講中,應(yīng)材執(zhí)行長Gary Dickerson表示,該公司不久將發(fā)布新的電晶體材料,它能將漏電流降低三個數(shù)量級以上。對于芯片制造商而言,這項消息幾乎就像2007年英特爾(Intel)在高k金屬閘方面取得進展一樣重要。但是,今天這樣的進展只會影響到規(guī)模越來越小的設(shè)計社群和公司。


根據(jù)人工智能(AI)記憶體處理器(PIM)芯片設(shè)計公司Syntiant執(zhí)行長Kurt Busch估計,7納米(nm)芯片投片大約要花1億美元,而從投片到第一款芯片產(chǎn)出大概要拖延到4個月的時間?!钢挥泻苌俚墓灸茇摀?dān)得起這樣龐大的金額。而像我們這樣的一家新創(chuàng)公司,可沒辦法負擔(dān)1億美元的天文數(shù)字。」


不久前才離開高通(Qualcomm)的伺服器處理器架構(gòu)師Dileep Bhandarkar說:「我越來越不那么熱衷于最新的制程節(jié)點了。它們對于像高通這樣的公司十分有利,但并不適用于其他所有人?!?/p>


柏克萊大學(xué)榮譽教授David Patterson表示,「我認為這大概就是摩爾定律終結(jié)的情況了?!顾赋?,臺積電(TSMC)的電晶體成本持平,英特爾也在致力于生產(chǎn)10nm芯片,「而有95 %的架構(gòu)師認為未來都脫離不了專用處理器?!筆atterson曾經(jīng)參與Google TPU的設(shè)計。


最近才退休的前英特爾資深微技術(shù)影專家Yan Borodovsky則期望能從摩爾定律傳承火炬至AI,使其成為指引半導(dǎo)體產(chǎn)業(yè)未來道路的一盞明燈。


他說:「我認為超越當(dāng)今馮·諾伊曼(von Neuman)的架構(gòu)將因『超越摩爾定律』(more than Moore)而受益。例如,憶阻器交叉開關(guān)可望成為神經(jīng)形態(tài)運算的基本組成部份……超越摩爾定律的世界很可能是關(guān)于你可以在特定區(qū)域放置多少種類的突觸以及他們有多么復(fù)雜…?!?/p>

微信圖片_20180721215946.jpg

應(yīng)材準(zhǔn)備發(fā)布可大幅降低漏電的電晶體材料(來源:Applied Materials)


為嵌入式系統(tǒng)打造超級電腦


致力于宣傳所謂「新認知時代」(a new cognitive era)的IBM認知解決方案暨研究資深副總John Kelly III表示,支援包括AI的2兆美元業(yè)務(wù)決策,就建立在1.5兆美元的IT業(yè)務(wù)之上。


Kelly說:「我經(jīng)歷過摩爾定律的早期階段,但現(xiàn)在發(fā)生的一些事情將真正改變這個世界,這些都與人工智能有關(guān)……這將帶來50年或更久的技術(shù)創(chuàng)新,并將推動我們的半導(dǎo)體產(chǎn)業(yè)繼續(xù)向前發(fā)展?!?/p>


IBM最近為美國政府研究人員打造了13mW Summit系統(tǒng),這是第一臺專用于處理AI任務(wù)的超級電腦,其中并搭載部份的輝達(Nvidia) GPU。Kelly說:「你不會再看到其他的傳統(tǒng)超級電腦了——因為它們將在未來的運算中融入AI……?!?/p>


事實上,機器學(xué)習(xí)的一大挑戰(zhàn)在于推動推論工作,以及最終在網(wǎng)絡(luò)邊緣為功耗受限的處理器進行訓(xùn)練任務(wù)。對于像百度(Baidu)、Facebook和Google等巨擘而言,采用當(dāng)今的GPU可能要花數(shù)周的時間才能完成訓(xùn)練模型任務(wù),這可說是個夢魘。


Syntiant的Busch說:「我們將在五年內(nèi)看到邊緣開始執(zhí)行一些訓(xùn)練。一開始先在資料中心處理神經(jīng)網(wǎng)絡(luò)的前幾層,而最后幾層則在邊緣處理——這是不可避免的?!?/p>


AI將成為許多產(chǎn)業(yè)領(lǐng)域的性能驅(qū)動力。針對以30格/秒(f/s)速率進行高解析(HD)視訊串流進行AI處理,大約需要每秒9.4TFLOS的運算效能。Nvidia首席科學(xué)家Bill Dally在主題演講中表示,自動駕駛車將會需要許多像這樣的高性能攝影機。

微信圖片_20180721220009.jpg

IBM的Kelly宣傳認知運算時代來臨(來源:EE Times)


從材料到演算法全面思考AI


隨著AI設(shè)下了更積極的新性能目標(biāo),業(yè)界也提出了實現(xiàn)這些愿景的新技術(shù)方向,包括在新材料、制程、電路、架構(gòu)、封裝和演算法方面的研究。簡言之,必須為AI重新思考每一件事。


加州大學(xué)洛杉磯分校(UCLA)電子工程學(xué)系教授Jason Woo說:「我們一直在考慮將MRAM或ReRAM作為快閃記憶體(flash)的替代方案……但是,AI為采用新興記憶體與不同材料的交叉架構(gòu)開辟了新的亮點,可用于實現(xiàn)更多的線性類比微縮,就像可編程的憶阻器一樣?!?/p>


Woo及其研究團隊一直在探索整合邏輯功能的三端比記憶體陣列。這是Syntiant和Mythic等新創(chuàng)公司以及IBM研究人員希望用于AI加速器(基于記憶體內(nèi)運算)的新型編程元件。


由于AI工作負載的平行本質(zhì),也為封裝技術(shù)帶來了絕佳機會。為資料中心進行訓(xùn)練提供全光罩芯片設(shè)計的新創(chuàng)公司Cerebras Systems技術(shù)長Gary Lauterback說,我們不應(yīng)該局限于單芯片設(shè)計,封裝方面也有很大的潛力,可以克服在Denard微縮中遇到的瓶頸。


許多最新的資料中心芯片都采用了2.5D堆疊的邏輯和記憶體。同時,臺積電正推出用于智能型手機和其他裝置的眾多晶圓級扇出封裝版本,工程師還需要一個能因應(yīng)AI需求的解碼器。


Bhandarkar說:「從成本和性能來看,我還找不到任何理想的多芯片技術(shù)。至今見過最好的要算是英特爾的EMIB,但它也并非所有人都可以使用。」


Dally透過縮減神經(jīng)網(wǎng)絡(luò)的大小及其矩陣數(shù)學(xué)的精度,快速地簡化了演算法與任務(wù)。他說,采用混合精度數(shù)學(xué),超級電腦老將Jack Dongarra因而能在Summit系統(tǒng)上帶來exaFLOPS級的AI性能。


Nvidia的研究人員以低至2位元展現(xiàn)浮點運算的愿景,而Imec研究機構(gòu)則進一步探索單一位元的途徑。


Dally補充說,神經(jīng)網(wǎng)絡(luò)本身可以從根本上簡化,以減少運算量。他說,即使只使用了10%的神經(jīng)網(wǎng)絡(luò)權(quán)重和30%的啟動效能,其準(zhǔn)確度也不至于降低到讓人無法接受。SqueezeNet就是針對嵌入式AI的案例之一。

微信圖片_20180721220042.jpg

Nvidia的Dally說神經(jīng)網(wǎng)絡(luò)需要減少一些權(quán)重(來源:EE Times)


量子電腦作為備用方案?


可怕的是必須走出已經(jīng)熟悉的道路,但這也可能是一件好事。Dally說:「成為一名電腦架構(gòu)師是一個非常激動人心的時刻。如今,就讓摩爾定律其自然地發(fā)展吧!我們必須真的變得更加智能?!?/p>


IBM的Kelly指出,如果這一切不幸都失敗了,那么就得發(fā)揮量子運算的潛力了。IBM的實驗室已開發(fā)出一套50個量子位元(qubit)的系統(tǒng)了。


他說:「在50到100個量子位元之間,系統(tǒng)將在幾秒鐘內(nèi)完成運算,這是當(dāng)今電腦永遠達不到的……除了AI之外,這是我一生中見過的最重要的事情了——它改變了游戲規(guī)則?!?/p>


其他人則警告道,針對如何建構(gòu)和使用量子系統(tǒng),目前還有許多的基礎(chǔ)研究正在進行中。


美國桑迪亞國家實驗室(Sandia National Laboratories)首席技術(shù)研究員Conrad James說:「我們知道如何打造深度學(xué)習(xí)系統(tǒng),但并不了解它們?nèi)绾芜\作……而且我們現(xiàn)在仍然處于嘗試不同技術(shù)的起步階段。量子研究則恰好相反。我們了解數(shù)學(xué)和物理,但并不知道如何打造量子系統(tǒng)。」


隨著摩爾定律逐漸式微,量子運算的未來還有很長的路要走。在指引未來發(fā)展方向的道路上,半導(dǎo)體產(chǎn)業(yè)幾乎沒有太多的選擇。AI萬歲!



本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。