基于多尺度重采样的车道线检测
2017年电子技术应用第4期
付黎明,李必军,叶雨同
武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉430079
摘要: 提出了一种适用于辅助驾驶的高鲁棒性车道线检测算法。算法采用了根据距离的影像金字塔,有效提高了检测效率和准确率,实现了Android平台的实时检测,使用水平方向暗-亮-暗特征、二次曲线车道模型和基于卡尔曼滤波的跟踪实时提取跟踪路面车道线,实现相机俯仰角的快速标定。实验证明,基于简单特征和车道线模型算法在Android系统的行车记录仪上可稳定地进行车道跟踪。
中圖分類號: TP751.1
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.2017.04.002
中文引用格式: 付黎明,李必軍,葉雨同. 基于多尺度重采樣的車道線檢測[J].電子技術(shù)應(yīng)用,2017,43(4):7-12.
英文引用格式: Fu Liming,Li Bijun,Ye Yutong. Lane detection based on multi scale resampling[J].Application of Electronic Technique,2017,43(4):7-12.
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.2017.04.002
中文引用格式: 付黎明,李必軍,葉雨同. 基于多尺度重采樣的車道線檢測[J].電子技術(shù)應(yīng)用,2017,43(4):7-12.
英文引用格式: Fu Liming,Li Bijun,Ye Yutong. Lane detection based on multi scale resampling[J].Application of Electronic Technique,2017,43(4):7-12.
Lane detection based on multi scale resampling
Fu Liming,Li Bijun,Ye Yutong
State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University, Wuhan 430079,China
Abstract: A robust lane detection algorithm is presented for ADAS applications. Utilizing a distance based image multiscale resampling method, horizontal dark-bright-dark feature, parabola lane model and Kalman filter based tracking, the algorithm extracts and tracks road lane in realtime. A fast pitch angle alignment method is put forward for realtime detection on Android mobile devices. Experiments show that the algorithm runs realtime on an Android car dashcam.
Key words : lane detection;multi scale resampling;image pyramid;parabola lane mode
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。




















