《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 艦用鋼板的大功率激光焊接參數(shù)優(yōu)化研究
艦用鋼板的大功率激光焊接參數(shù)優(yōu)化研究
2017年電子技術(shù)應(yīng)用第2期
劉雨晴,湯金萍,華 亮,鄭長(zhǎng)煒
南通大學(xué) 電氣工程學(xué)院,江蘇 南通226019
摘要: 針對(duì)高強(qiáng)低碳合金厚鋼板大功率激光焊接過程的非線性、多變量耦合性、不確定性等特點(diǎn),通過構(gòu)建基于聲信號(hào)采集的監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)艦用鋼板焊接過程聲音的實(shí)時(shí)采集,并提出特征向量,構(gòu)建雙權(quán)值神經(jīng)網(wǎng)絡(luò)(DWNN)模型,充分利用DWNN優(yōu)秀的非線性擬合能力,實(shí)現(xiàn)大功率激光焊接多參數(shù)與聲信號(hào)多特征之間非線性映射的神經(jīng)網(wǎng)絡(luò)建模。在擬合精度和迭代次數(shù)上,DWNN比徑向基函數(shù)網(wǎng)絡(luò)等傳統(tǒng)網(wǎng)絡(luò)更優(yōu),為高強(qiáng)度低合金厚鋼板的大功率焊接參數(shù)的優(yōu)化和控制提供了良好的基礎(chǔ)。
中圖分類號(hào): TP391.9
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2017.02.028
中文引用格式: 劉雨晴,湯金萍,華亮,等. 艦用鋼板的大功率激光焊接參數(shù)優(yōu)化研究[J].電子技術(shù)應(yīng)用,2017,43(2):117-119,123.
英文引用格式: Liu Yuqing,Tang Jinping,Hua Liang,et al. Research on optimization of high power laser welding parameters of warship-used steel[J].Application of Electronic Technique,2017,43(2):117-119,123.
Research on optimization of high power laser welding parameters of warship-used steel
Liu Yuqing,Tang Jinping,Hua Liang,Zheng Changwei
School of Electrical Engineering,Nantong University,Nantong 226019,China
Abstract: For the characteristic of non-linear, multivariable coupling and uncertainty of high-strength low-alloy steel in high power laser welding process, a monitoring system based on acoustic signal acquisition was built, real-time acquisition of the sound was achieved, feature vector was extracted, and Double Weights Neural Network(DWNN) model was constructed. Excellent nonlinear fitting ability of DWNN was used to build the nonlinear mapping neural network model between multiple parameters and sound signals. DWNN has higher fitting accuracy and less iteration than traditional radial basis function network(RBF) in the same size, which provides good foundation to parameters optimization and control of high power laser welding.
Key words : laser welding;double weights neural network;acoustic signal;feature extraction

0 引言

    國(guó)內(nèi)外對(duì)艦用高強(qiáng)低合金鋼的主要焊接方式中間工序繁雜,能量消耗巨大,機(jī)器人難以勝任[1]。激光電弧復(fù)合焊接技術(shù)可以進(jìn)一步地提升焊接速度,增加焊接材料的厚度,加強(qiáng)間隙橋接能力,極大地提高效率[2]。焊接過程由于焊條裂化和熔融金屬振動(dòng)而伴隨著聲音,基于麥克風(fēng)的焊接聲信號(hào)采集及分析逐步發(fā)展起來。AO S等人對(duì)激光焊接中的聲信號(hào)特征進(jìn)行了二維建模仿真和實(shí)驗(yàn)分析,通過試驗(yàn)得到焊接熔池的預(yù)測(cè)振蕩頻率[3]。對(duì)于激光電弧復(fù)合焊中出現(xiàn)的焊接缺陷、焊接過程不穩(wěn)定性等狀況,許多研究者開展了基于人工神經(jīng)網(wǎng)絡(luò)等理論的研究。雙權(quán)值神經(jīng)網(wǎng)絡(luò)(Double Weights Neural Network,DWNN)[4]函數(shù)逼近能力強(qiáng),有更強(qiáng)的分類能力,在學(xué)習(xí)速度等方面也比BP神經(jīng)網(wǎng)絡(luò)(Back Propagation,BP)[5]及徑向基函數(shù)(Radial Basis Function network,RBF)[6]等網(wǎng)絡(luò)結(jié)構(gòu)要好,得到了推廣應(yīng)用,如高維數(shù)據(jù)擬合[7]等。文獻(xiàn)研究多為小功率復(fù)合焊接,對(duì)于高強(qiáng)低碳合金厚鋼板的激光焊接研究甚少。本文以美國(guó)核動(dòng)力“福特級(jí)”航母艦用高強(qiáng)低碳合金鋼HSLA-115為研究對(duì)象,提出了基于聲信息及雙權(quán)神經(jīng)網(wǎng)絡(luò)的焊接參數(shù)優(yōu)化方法,為我國(guó)艦用焊接實(shí)際工程技術(shù)服務(wù)。

1 聲信號(hào)的采集與預(yù)處理

1.1 聲信號(hào)采集平臺(tái)

    本平臺(tái)由丹麥B&K公司的4189聲音傳感器、10 kW光纖激光器IPG-10000、六軸高精度焊接機(jī)器人KUKA60HA、焊材HSLA-115組成。不同厚度的HSLA -115鋼板如圖1所示,鋼板厚度依次為6 mm、8 mm、10 mm、12 mm和14 mm。

jsj1-t1.gif

1.2 小波閾值降噪

    本文采用基于小波變換方法,既可以有效抑制焊接過程中的放氣噪聲、機(jī)械運(yùn)行噪聲,又可以減少信號(hào)在突變部分的失真。小波降噪過程如圖2所示[8]。

jsj1-t2.gif

1.3 去噪性能評(píng)價(jià)

    通過對(duì)比各個(gè)小波基的降噪能力以及考慮PC的處理速度,選擇小波基是db4,小波分解3層。以鋼板厚度為8 mm焊透時(shí)為例,計(jì)算信噪比(Signal-Noise Ratio,SNR)[9]和均方根誤差(Root Mean Square Error,RMSE)[10],結(jié)果如表1所示。

jsj1-b1.gif

    通過觀察表1,可以發(fā)現(xiàn)采用雙閾值雙因子的閾值函數(shù)去噪能力更強(qiáng),可以更好地進(jìn)行特征提取。

2 特征提取

    運(yùn)用文獻(xiàn)[8]的方法,提取了時(shí)域的短時(shí)能量En、短時(shí)平均幅度Mn、短時(shí)平均過零率Zn、短時(shí)零能比ZERn 4個(gè)參數(shù)特征。窗口長(zhǎng)度為1 024,重疊50%進(jìn)行分幀。不同焊接參數(shù)如表2所示。對(duì)應(yīng)的En、Mn、Zn、ZERn結(jié)果如表3所示。

jsj1-b2.gif

jsj1-b3.gif

3 雙權(quán)值神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)擬合算法

    本文在艦用高強(qiáng)低碳合金厚鋼板焊接參數(shù)優(yōu)化中應(yīng)用文獻(xiàn)[7]提出的多維函數(shù)擬合逼近算法。雙權(quán)值神經(jīng)網(wǎng)絡(luò)的固定結(jié)構(gòu)如圖3所示。

jsj1-t3.gif

    在雙權(quán)值神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型中[7],最后擬合的公式如下[7]: 

jsj1-gs1-2.gif

jsj1-gs3.gif

4 雙權(quán)值神經(jīng)網(wǎng)絡(luò)建模與分析

    本文選取雙權(quán)值神經(jīng)網(wǎng)絡(luò)(DWNN)與徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RBF)。以焊接鋼板厚度、焊接功率、焊接速度作為神經(jīng)網(wǎng)絡(luò)的輸入,以En、Mn、Zn、ZERn作為輸出,通過訓(xùn)練樣本建立神經(jīng)網(wǎng)絡(luò),并比較兩神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效果。

    (1)網(wǎng)絡(luò)輸出為En    

    網(wǎng)絡(luò)結(jié)構(gòu)見圖4,擬合訓(xùn)練效果見圖5。

jsj1-t4.gif

jsj1-t5.gif

    (2)網(wǎng)絡(luò)輸出為Mn

    網(wǎng)絡(luò)輸出為Mn時(shí)擬合訓(xùn)練效果見圖6。

jsj1-t6.gif

    (3)網(wǎng)絡(luò)輸出為Zn

    網(wǎng)絡(luò)輸出為Zn時(shí)擬合訓(xùn)練效果見圖7。

jsj1-t7.gif

    (4)網(wǎng)絡(luò)輸出為ZERn    

    網(wǎng)絡(luò)輸出為ZERn時(shí),擬合訓(xùn)練效果見圖8。

jsj1-t8.gif

    圖5~圖8中,橫坐標(biāo)為所采用的神經(jīng)元個(gè)數(shù),縱坐標(biāo)為均方誤差。在DWNN與RBF中,輸入為鋼板厚度、焊接功率、焊接速度,對(duì)應(yīng)的輸出為En、Mn、Zn、ZERn。隨著神經(jīng)元數(shù)目的增加,采用DWNN 訓(xùn)練時(shí)的均方誤差始終小于RBF的均方誤差。

5 結(jié)論

    本文采集了不同的焊接鋼板厚度、焊接功率、焊接速度下的激光電弧復(fù)合焊聲信號(hào),提取出短時(shí)能量、短時(shí)平均幅度、短時(shí)平均過零率、短時(shí)零能比4個(gè)特征值,并分別以此為輸出構(gòu)建了4個(gè)不同的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。結(jié)果表明,采用DWNN對(duì)4個(gè)特征值進(jìn)行訓(xùn)練時(shí)的精度始終高于RBF,收斂速度也始終比RBF快。本文利用神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)探究了不同焊接參數(shù)與焊接過程中聲信號(hào)之間的關(guān)系,進(jìn)一步為基于聲信號(hào)的大功率激光電弧復(fù)合焊接參數(shù)優(yōu)化及焊接質(zhì)量監(jiān)測(cè)與控制提供了參考依據(jù)。

參考文獻(xiàn)

[1] 武春學(xué),俊旭,朱丙坤.高能束焊接技術(shù)在艦船建造中的應(yīng)用[J].材料開發(fā)與應(yīng)用,2010,25(3):79-83.

[2] ATABAKI M M,MA J,LIU W,et al.Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel[J].Materials & Design,2015,67:509-521.

[3] AO S,LUO Z,F(xiàn)ENG M,et al.Simulation and experimental analysis of acoustic signal characteristics in laser welding[J].International Journal of Advanced Manufacturing Technology,2015,81(1):277-287.

[4] 王守覺,李兆皺,陳向東,等.通用神經(jīng)網(wǎng)絡(luò)硬件中神經(jīng)元基本數(shù)學(xué)模型的討論[J].電子學(xué)報(bào),2001,29(5):577-580.

[5] 程滿玲,孫峙華.基于BP神經(jīng)網(wǎng)絡(luò)技術(shù)的網(wǎng)絡(luò)時(shí)延預(yù)測(cè)研究[J].測(cè)控技術(shù),2015,34(6):74-76.

[6] LIU J.Radial basis function(RBF) neural network  control for mechanical systems:design,analysis and matlab simulation[M].Springer Science & Business Media,2013.

[7] 曹宇.一種新型雙權(quán)值人工神經(jīng)元網(wǎng)絡(luò)的數(shù)據(jù)擬合研究[J].電子學(xué)報(bào),2004,32(10):1671-1673.

[8] HUA L,ZHENG C,GU J,et al.Laser arc sound signal processing and welding status recognition based on geometric learning[C].2015 6th International Conference on Manufac-turing Science and Engineering,2015,32:1383-1394.

[9] SUMMERS T A,WILSON S G.SNR mismatch and online estimation in turbo decoding[J].IEEE Transactions on Communications,1998,46(4):421-423.

[10] BARNSTON A G.Correspondence among the correlation,RMSE, and heidke forecast verification measures,refinement of the heidke score[J].Weather & Forecasting,1992,7(4):699-709.

[11] 呂世威.基于LM的汽車燃油消耗不解體快速檢測(cè)方法研究[J].制造業(yè)自動(dòng)化,2015,37(15):152-156.



作者信息:

劉雨晴,湯金萍,華  亮,鄭長(zhǎng)煒

(南通大學(xué) 電氣工程學(xué)院,江蘇 南通226019)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。