文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2014)12-0063-03
0 引言
我國(guó)現(xiàn)役飛機(jī)中,直流電源系統(tǒng)占有重要的地位。該電源系統(tǒng)中對(duì)過壓保護(hù)電路的延時(shí)特性有特殊要求,即反延時(shí)特性,電源過壓值越高,延時(shí)保護(hù)時(shí)間越短。為滿足反延時(shí)特性的要求,參考文獻(xiàn)[1]提出了通過延時(shí)電路并聯(lián)的實(shí)現(xiàn)方法,根據(jù)反延時(shí)的要求確定并聯(lián)的支路數(shù)目,由此得到一種反延時(shí)電路。
過壓保護(hù)電路是直流電源系統(tǒng)安全運(yùn)行的保障。針對(duì)其反延時(shí)特性提出的反延時(shí)電路的可靠性分析是必要的。電路中電子元器件的壽命服從指數(shù)分布[2]。對(duì)于指數(shù)分布,在定時(shí)、定數(shù)截尾數(shù)據(jù)無缺失的情形下,理論和具體的應(yīng)用方法均比較成熟。曹晉華,程侃[3]的《可靠性數(shù)學(xué)引論》對(duì)無數(shù)據(jù)缺場(chǎng)合進(jìn)行了全面的總結(jié)。真實(shí)試驗(yàn)環(huán)境下,試驗(yàn)機(jī)理、觀測(cè)手段及記錄手段不當(dāng)?shù)葧?huì)導(dǎo)致部分樣本的丟失,在不能再次進(jìn)行試驗(yàn)的情形下,對(duì)不完全樣本的可靠性分析,具有一定的研究?jī)r(jià)值。在定數(shù)截尾有缺失的情形下,參考文獻(xiàn)[4]給出了單、雙參數(shù)指數(shù)分布中參數(shù)的最佳線性無偏估計(jì)及近似極大似然估計(jì);參考文獻(xiàn)[5]給出了指數(shù)分布基于定數(shù)截尾有缺失樣本的Bayes估計(jì),并給出了一種近似算法,但計(jì)算稍有復(fù)雜。參考文獻(xiàn)[6]結(jié)合參數(shù)的最佳線性無偏估計(jì)導(dǎo)出了單參數(shù)指數(shù)分布的Bayes估計(jì)。
對(duì)于參考文獻(xiàn)[1]中的反延時(shí)電路,參考文獻(xiàn)[7]在定時(shí)無替換數(shù)據(jù)無缺失的情形下,給出了可靠性指標(biāo)的Bayes估計(jì)及極大似然估計(jì)。鑒于真實(shí)的試驗(yàn)環(huán)境,本文結(jié)合參數(shù)的最佳線性無偏估計(jì),在定數(shù)截尾數(shù)據(jù)缺失的情形下,給出反延時(shí)電路可靠性指標(biāo)的Bayes估計(jì),并結(jié)合矩估計(jì)法給出了超參數(shù)的估計(jì)。
1 系統(tǒng)可靠性指標(biāo)
反延時(shí)電路中每個(gè)電子元器件的壽命均服從參數(shù)為的指數(shù)分布,其概率密度函數(shù)為:
反延時(shí)電路圖在參考文獻(xiàn)[1,7]中已給出,參考文獻(xiàn)[7]給出了對(duì)應(yīng)的可靠性工程圖,如圖1所示。
選取反延時(shí)電路系統(tǒng)中單個(gè)電子元器件的失效率r(t)、系統(tǒng)可靠度Rs(t)及平均壽命MTTFs作為可靠性指標(biāo)。由參考文獻(xiàn)[7]可知,當(dāng)有m種延時(shí)要求時(shí),單個(gè)部件失效率[7]:
2 Bayes估計(jì)
在定數(shù)截尾數(shù)據(jù)有缺失的情形下討論可靠性指標(biāo)的Bayes估計(jì)。隨機(jī)抽取n個(gè)反延時(shí)電路系統(tǒng)中的電子元器件進(jìn)行試驗(yàn)。當(dāng)電子元器件的失效數(shù)達(dá)到r時(shí)便停止試驗(yàn)。得到的失效時(shí)刻依次為0≤t1≤t2≤…≤tr(r≤n),但最終只獲得了k(k<r)個(gè)觀察值,由參考文獻(xiàn)[5]可知t的似然函數(shù)形式復(fù)雜,求解可靠性指標(biāo)的Bayes估計(jì)十分困難,為此本文采用參考文獻(xiàn)[6]中基于最佳線性無偏估計(jì)的近似方法來求得的后驗(yàn)密度函數(shù)。
2.1 基于最佳線性無偏估計(jì)的后驗(yàn)密度函數(shù)
已知t1,t2,…,tr獨(dú)立同分布,且服從分布F(t|)=1-exp(-t),t≥0,令t0≡0,則0≡t0≤t1≤t2…≤tr為其順序統(tǒng)計(jì)量。設(shè):
Mj=(n-j+1)(tj-tj-1)(5)
對(duì)(5)變形可得:
由此可知指數(shù)分布的順序統(tǒng)計(jì)量可以表示成:
由參考文獻(xiàn)[3]可知,M1,…,Mr獨(dú)立同分布t≥0,則:
其中r0=0,i=1,2,…,k,且由上述條件可知X1,X2,…,Xk是相互獨(dú)立的,從而利用參考文獻(xiàn)[8]中Gauss-Markov定理可以得到的最佳線性無偏估計(jì)(BLUE)為:
的先驗(yàn)分布為伽馬分布,即:
則的后驗(yàn)分布為:
2.2 可靠性指標(biāo)的Bayes估計(jì)
單個(gè)電子元器件的失效率在平方損失下的Bayes估計(jì)為:
系統(tǒng)的可靠度為:
上式展開后每一項(xiàng)均可表示為Ae-Bt,A、B為常數(shù),即,當(dāng)m給定,Ai,Bi均是已知的常數(shù)。因此令P(A,B)=Ae-B?姿t,則P(A,B)在平方損失下的Bayes估計(jì)為:
則系統(tǒng)的可靠度Rs(t)在平方損失下的Bayes估計(jì)為:
對(duì)應(yīng)的系統(tǒng)平均壽命的近似Bayes估計(jì)為:
當(dāng)m給定后便可計(jì)算出Ai和Bi,帶入式(22)、(23),便可以得到系統(tǒng)可靠度及平均壽命的Bayes估計(jì)。
2.3 超參數(shù)估計(jì)
式(19)、(22)、(23)中均含有未知參數(shù),即超參數(shù),則3個(gè)可靠性指標(biāo)的Bayes估計(jì)不能直接應(yīng)用。丟失數(shù)據(jù)的個(gè)數(shù)要遠(yuǎn)小于樣本總量,因此在有數(shù)據(jù)缺失的情況下,通過矩估計(jì)法來近似估計(jì)超參數(shù)
。先計(jì)算t的一階矩和二階矩:
帶入式(19)、(22)、(23)中,得到可靠性指標(biāo)的Bayes估計(jì)。
3 數(shù)值模擬
為觀察本文方法的估計(jì)效果,針對(duì)并聯(lián)6個(gè)支路的反延時(shí)電路系統(tǒng),將可靠性指標(biāo)的Bayes估計(jì)與應(yīng)用參考文獻(xiàn)[4]方法所得的極大似然估計(jì)(MLE)進(jìn)行了數(shù)值模擬比較。根據(jù)GB/T1772[2]中規(guī)定的電子元器件失效率等級(jí)標(biāo)準(zhǔn),在模擬中,取的真值為
=2×10-5(1/h),對(duì)應(yīng)的系統(tǒng)可靠度Rs(24 000h)為0.668 4。取n=30,70兩種情況,k為數(shù)據(jù)缺失個(gè)數(shù),r為失效數(shù)。為排除偶然因素的影響,對(duì)于每種組合隨機(jī)模擬10 000次,并取所得估計(jì)值的均值作為最終的估計(jì)結(jié)果。
利用蒙特卡羅方法模擬產(chǎn)生服從指數(shù)分布的樣本數(shù)據(jù),再依據(jù)k,r的取值,得到最終的截尾樣本數(shù)據(jù)。根據(jù)2.2、2.3節(jié)所得結(jié)果計(jì)算出可靠性指標(biāo)的Bayes估計(jì),如表1、表2所示,相對(duì)偏差對(duì)比如圖2所示。
結(jié)合上述圖表可以看出:(1)單個(gè)電子元器件的失效率及系統(tǒng)的可靠度的Bayes估計(jì)的相對(duì)偏差均小于MLE的相對(duì)偏差,可見Bayes估計(jì)的估計(jì)精度要高于MLE;(2)當(dāng)截尾樣本數(shù)據(jù)容量一定時(shí),隨著數(shù)據(jù)缺失個(gè)數(shù)k增加,單個(gè)電子元器件的失效率及系統(tǒng)的可靠度的Bayes估計(jì)和MLE的相對(duì)偏差逐漸增大,估計(jì)精度降低;且k對(duì)MLE的影響大于Bayes估計(jì);(3)r增加時(shí),電子元器件的失效率及系統(tǒng)的可靠度的Bayes估計(jì)和MLE的相對(duì)偏差逐漸減小,估計(jì)精度升高。
通過對(duì)比發(fā)現(xiàn),Bayes估計(jì)的估計(jì)效果要優(yōu)于MLE。這是因?yàn)锽ayes估計(jì)結(jié)合了有效的先驗(yàn)信息,且受數(shù)據(jù)缺失個(gè)數(shù)的影響要小于MLE。
4 結(jié)論
本文討論了定數(shù)截尾數(shù)據(jù)缺失的情形下,反延時(shí)電路可靠性指標(biāo)的Bayes估計(jì)。通過數(shù)值模擬,將Bayes估計(jì)與相應(yīng)的MLE進(jìn)行了分析對(duì)比。結(jié)果表明Bayes估計(jì)的相對(duì)偏差均要小于所對(duì)應(yīng)的MLE的相對(duì)偏差,且受數(shù)據(jù)缺失個(gè)數(shù)的影響要小于MLE。所以在定數(shù)截尾數(shù)據(jù)有缺失的場(chǎng)合下,對(duì)反延時(shí)電路系統(tǒng)的可靠性指標(biāo)進(jìn)行估計(jì)時(shí),可選用Bayes估計(jì),并且在真實(shí)的試驗(yàn)環(huán)境下,應(yīng)避免數(shù)據(jù)的大量缺失。
參考文獻(xiàn)
[1] 張益平.飛機(jī)低壓直流電源系統(tǒng)研究[D].西安:西北工業(yè)大學(xué),2004.
[2] 付桂翠,陳穎,張素娟,等.電子元器件可靠性技術(shù)教程[M].北京:北京航空航天大學(xué)出版社,2010.
[3] 曹晉華,程侃.可靠性數(shù)學(xué)引論(修訂版)[M].北京:高等教育出版社,2012.
[4] BALASUBRAMANIAN K,BALAKRISHNAN N.Estimationfor one-and two-parameter exponential distributions undermultiple type-II censoring[J].Statistical Papers,1992,33(1):203-216.
[5] 王乃生,王玲玲.定數(shù)截尾數(shù)據(jù)缺失場(chǎng)合下指數(shù)分布參數(shù)的Bayes估計(jì)[J].應(yīng)用概率統(tǒng)計(jì),2001,17(3):229-235.
[6] 龍兵,周良澤.定數(shù)截尾數(shù)據(jù)缺失場(chǎng)合下冷貯備串聯(lián)系統(tǒng)可靠性指標(biāo)的經(jīng)驗(yàn)Bayes估計(jì)[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2011,41(002):115-121.
[7] 高妮,師義民.一種反延時(shí)電路的可靠性評(píng)估[J].電子技術(shù)應(yīng)用,2008(6):77-80.
[8] 羅雯,魏建中,陽輝,等.電子元器件可靠性試驗(yàn)工程[M].北京:電子工業(yè)出版社,2005.
[9] PATNAIK P B.The non-central 2 and F-distribution andtheir applications[J].BiomEtrika,1949,36(1):202-232.