《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 自適應(yīng)GPS擴(kuò)展卡爾曼定位算法研究
自適應(yīng)GPS擴(kuò)展卡爾曼定位算法研究
2016年電子技術(shù)應(yīng)用第8期
楊 麗,胡方強(qiáng)
南京工業(yè)大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,江蘇 南京211816
摘要: 針對(duì)全球定位系統(tǒng)(GPS)信號(hào)定位過程中存在多徑導(dǎo)致定位誤差,尤其靜態(tài)環(huán)境中零頻差短多徑引發(fā)的定位拖尾現(xiàn)象,提出了一種自適應(yīng)估計(jì)多徑殘留的擴(kuò)展卡爾曼濾波算法,實(shí)現(xiàn)了靜態(tài)環(huán)境中零頻差短多徑抑制。首先量化地給出了基帶多徑抑制后的多徑殘留模型,即多徑呈現(xiàn)“矩形”類型分布,以此為基礎(chǔ)設(shè)計(jì)了一種自適應(yīng)估計(jì)多徑殘留的方法,即在擬合窗口內(nèi)估計(jì)偽距測(cè)量誤差的均值和標(biāo)準(zhǔn)差,作為EKF算法的測(cè)量誤差協(xié)方差矩陣,實(shí)現(xiàn)了EKF中多徑的動(dòng)態(tài)估計(jì)。最后通過仿真表明,本文的自適應(yīng)估計(jì)多徑殘留的擴(kuò)展卡爾曼濾波(ARKF)能有效抑制零頻差短多徑影響。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2016.08.022
中文引用格式: 楊麗,胡方強(qiáng). 自適應(yīng)GPS擴(kuò)展卡爾曼定位算法研究[J].電子技術(shù)應(yīng)用,2016,42(8):91-93,97.
英文引用格式: Yang Li,Hu Fangqiang. Study on extended Kalman localization algorithm for adaptive GPS[J].Application of Electronic Technique,2016,42(8):91-93,97.
Study on extended Kalman localization algorithm for adaptive GPS
Yang Li,Hu Fangqiang
College of Computer Science and Technology,Nanjing Technology University,Nanjing 211816,China
Abstract: In view of the global positioning system(GPS) positioning errors caused by multipath signal positioning process, especially the zero frequency short multipath caused by localization of tailing phenomenon in the static environment. The first quantitative gave the model of residual multipath after controlled of base band multipath. That is, the multipath showed "rectangular" type distribution. On this basis,proposed an adaptive multipath residual estimation extended Kalman filter to estimate the residual pseudo range measurement error. The estimated pseudo range measurement error of the mean and standard deviation in the fitting window,as the covariance matrix of measurement error in EKF algorithm, realizing the dynamic EKF estimation in multipath. Finally, simulation results show that the adaptive multipath residual-estimation extended Kalman filter(ARKF)can effectively suppress the zero frequency short multipath effects.
Key words : multipath;zero frequency difference;extended Kalman filter;measurement error covariance

0 引言

  多徑干擾是高性能衛(wèi)星導(dǎo)航接收機(jī)的主要誤差源,靜態(tài)環(huán)境的多徑“固定不變”,導(dǎo)致定位結(jié)果在某個(gè)方向上形成“拖尾”現(xiàn)象[1]。接收機(jī)在靜態(tài)環(huán)境中靜止不動(dòng),多徑與直達(dá)信號(hào)的多普勒頻差為零,靜態(tài)短多徑完全融合在直達(dá)信號(hào)中,無論從多普勒頻率還是從碼相位維度都難以鑒別。靜態(tài)多徑會(huì)導(dǎo)致偽距測(cè)量偏差,雖然定位解算方法可平滑多徑影響,但只是簡(jiǎn)單地將多徑近似為隨機(jī)抖動(dòng)的高斯噪聲,并未考慮多徑造成的偽距誤差特性[2-4]。因此針對(duì)靜態(tài)場(chǎng)景中常見的零頻差短多徑提出一種自適應(yīng)估計(jì)多徑殘留的方法。

1 GPS多徑殘留模型

  接收機(jī)基帶的輸入信號(hào)為:

  QQ圖片20161201164254.png

  復(fù)數(shù)表達(dá)式為:

  QQ圖片20161201164258.png

  假定t1時(shí)刻前,只存在直達(dá)信號(hào),t1時(shí)刻后加入帶有多普勒的多徑影響,則直達(dá)信號(hào)多普勒頻率fd0=0,多徑多普勒頻率QQ圖片20161201164723.png多徑信號(hào)M的復(fù)數(shù)表達(dá)為:

  QQ圖片20161201164301.png

  在QQ圖片20161201164945.png時(shí),偽距誤差呈現(xiàn)“矩形”分布的特性,在不同多徑多普勒情況下,偽距誤差呈現(xiàn)QQ圖片20161201164823.png周期“震蕩”,最高幅度為無多徑多普勒頻差時(shí)的最大誤差值[5-7]。因?yàn)樯婕皬?fù)雜的變換,偽距誤差解析解不易求出,為了簡(jiǎn)潔地表征多徑多普勒情況下偽距變換規(guī)律,提出簡(jiǎn)化模型,用正弦式表示偽距誤差:

  QQ圖片20161201164304.png

2 擴(kuò)展卡爾曼的GPS定位模型

  擴(kuò)展卡爾曼濾波基于動(dòng)態(tài)系統(tǒng)模型是高斯分布,其濾波過程主要分兩個(gè)階段:預(yù)測(cè)和更新[8,9]。在預(yù)測(cè)階段,濾波器根據(jù)上一狀態(tài)的估計(jì)做出對(duì)當(dāng)前狀態(tài)的估計(jì)。在更新階段,濾波器利用當(dāng)前狀態(tài)的觀測(cè)值去優(yōu)化在預(yù)測(cè)階段獲得的預(yù)測(cè)值, 以獲得一個(gè)更精確的新的估計(jì)值。根據(jù)已知的線性觀測(cè)模型和轉(zhuǎn)移狀態(tài)模型,可以分別構(gòu)建出預(yù)測(cè)過程和更新過程[10]。

  為實(shí)現(xiàn)GPS定位,將擴(kuò)展卡爾曼濾波算法特殊化,選取狀態(tài)量為:

  QQ圖片20161201164307.png

  同時(shí),選取觀測(cè)向量為:

  QQ圖片20161201164311.png

  QQ圖片20161201165050.jpg代表第i顆衛(wèi)星到接收機(jī)的偽距QQ圖片20161201165100.jpg為第i顆衛(wèi)星到接收機(jī)的偽距變化率。

  QQ圖片20161201164315.png

  QQ圖片20161201165201.png為該衛(wèi)星的偽距測(cè)量誤差,QQ圖片20161201165205.jpg為偽距變化率測(cè)量誤差。

  圖1展示了GPS定位中EKF的算法流程。

圖像 001.png

圖1  擴(kuò)展卡爾曼濾波定位解算流程圖

  其中:

  QQ圖片20161201164317.png

  過程噪聲協(xié)方差Q為:

  QQ圖片20161201164321.png

  QQ圖片20161201164325.png

  其中,SVx為速度噪聲(即加速度)功率譜密度值。St為接收機(jī)鐘差噪聲的功率密度,Sf為接收機(jī)頻漂噪聲的功率密度[11-12]。

  觀測(cè)噪聲R存在多種方法,包括Sage自適應(yīng)濾波法、衛(wèi)星仰角權(quán)重法、衛(wèi)星信號(hào)載噪比法。本文采用標(biāo)準(zhǔn)EKF功率系數(shù)加權(quán)的方法設(shè)定觀測(cè)噪聲,這是一種計(jì)算簡(jiǎn)單有效的方法[13]。

3 基于多徑殘留模型的測(cè)量誤差協(xié)方差估計(jì)

  傳統(tǒng)的擴(kuò)展卡爾曼濾波算法只是簡(jiǎn)單的假設(shè)接收機(jī)在各觀測(cè)歷元的測(cè)量誤差服從期望為零的高斯分布,實(shí)際上,零頻差短多徑干擾下的測(cè)量誤差均值并不為零,這種差異導(dǎo)致定位結(jié)果偏離真實(shí)狀態(tài)[14-15]。所以,必須對(duì)測(cè)量誤差期望進(jìn)行估計(jì),才能得到精確的狀態(tài)值。根據(jù)零頻差短多徑誤差在一段時(shí)間內(nèi)呈“矩形”分布的特點(diǎn),對(duì)測(cè)量殘差進(jìn)行開窗擬合,在擬合窗口內(nèi)對(duì)測(cè)量殘差求平均確定測(cè)量誤差期望。根據(jù)測(cè)量誤差期望確定當(dāng)前測(cè)量誤差協(xié)方差,作為自適應(yīng)參數(shù)提供給擴(kuò)展卡爾曼濾波模型,從而減弱測(cè)量誤差中多徑誤差對(duì)定位結(jié)果的影響。

  令測(cè)量誤差向量為vk,測(cè)量誤差協(xié)方差矩陣為Rk,測(cè)量誤差向量的偏差為uk,因此觀測(cè)模型的期望不一定為零。

  QQ圖片20161201164328.png

  QQ圖片20161201164331.png

  當(dāng)E(vk)≠0時(shí),QQ圖片20161201165314.png這表明,當(dāng)一段時(shí)間yk存在持續(xù)偏差時(shí),E(Xk)≠Xk,即Xk為有偏估計(jì)。

  在有持續(xù)偏差時(shí),定位殘差向量為:

  QQ圖片20161201164334.png

  假設(shè)在比較短的時(shí)間段內(nèi),測(cè)量誤差均值沒有發(fā)生很大的變化,選取移動(dòng)窗口長(zhǎng)度N,即接收機(jī)在tK-N+1到tK時(shí)刻共N組觀測(cè)值,應(yīng)有:

  QQ圖片20161201164340.png

  將式(13)兩端取和再除以N,得到:

  QQ圖片20161201164342.png

  若不考慮過程轉(zhuǎn)換模型誤差,只考慮測(cè)量誤差對(duì)狀態(tài)估計(jì)的影響,則Xk應(yīng)為無偏估計(jì),即:

  QQ圖片20161201164345.png

  QQ圖片20161201164348.png

  表明uk是uk的無偏估計(jì)。

  測(cè)量誤差協(xié)方差與觀測(cè)殘差的關(guān)系為:

  QQ圖片20161201164351.png

  取Rk-i的均值作為Rk的估計(jì)值,則有:

  QQ圖片20161201164355.png

  可以近似求解tk時(shí)刻觀測(cè)量yk的誤差協(xié)方差矩陣R,并作為擴(kuò)展卡爾曼濾波器的自適應(yīng)參數(shù),實(shí)現(xiàn)了基于多徑殘留模型的自適應(yīng)擴(kuò)展卡曼濾波算法。

4 仿真驗(yàn)證

  通過仿真來驗(yàn)證零頻差短多徑對(duì)EKF、ARKF定位結(jié)果的影響。仿真參數(shù)為:4顆衛(wèi)星,GOP為2.5,衛(wèi)星直達(dá)信號(hào)載噪比均為40 dBHz,接收機(jī)固定,忽略衛(wèi)星時(shí)鐘鐘差、接收機(jī)時(shí)鐘鐘差、大氣層延時(shí)的影響;其中正南方的一顆衛(wèi)星在30 s~50 s間引入所示的測(cè)量誤差,包括偽距測(cè)量誤差和多普勒測(cè)量誤差;EKF和ARKF采用了相同的狀態(tài)方程和過程噪聲Q,僅測(cè)量誤差不同,其中EKF的測(cè)量誤差協(xié)方差采用功率系數(shù)加權(quán)法,而ARKF的測(cè)量誤差協(xié)方差采用了本文提出的自適應(yīng)多徑殘留估計(jì)方法。

  圖2給出ARKF中估計(jì)的偽距測(cè)量誤差估計(jì)均值與實(shí)際值的對(duì)比,擬合窗口長(zhǎng)度N=5。從圖中可以看出:

圖像 002.png

圖2  0 Hz多普勒頻差偽距測(cè)量誤差對(duì)比

  (1)EKF中測(cè)量誤差標(biāo)準(zhǔn)差與衛(wèi)星C/N0有關(guān),當(dāng)C/N0為40 dBHz時(shí),其標(biāo)準(zhǔn)差為0.45 m,和無多徑情況下的偽距測(cè)量標(biāo)準(zhǔn)差基本一致,因此EKF 在無多徑干擾時(shí)仍然能夠較精確地定位。

  (2)ARKF估計(jì)的偽距測(cè)量誤差均值與實(shí)際多徑測(cè)量誤差基本相符,反映了誤差變化趨勢(shì),當(dāng)多徑引入和多徑撤除時(shí),相對(duì)誤差較大。

  圖3、圖4給出了EKF和ARKF的二維定位誤差仿真對(duì)比圖。圖3是EKF 2D定位結(jié)果圖,上述30 s~50 s引入的多徑導(dǎo)致了定位點(diǎn)向北偏離了2.2 m。圖4是ARKF 2D定位結(jié)果圖,由于自適應(yīng)估計(jì)了多徑,定位點(diǎn)僅僅偏離了0.5 m,多徑抑制能力比EKF提升了3.4倍。

圖像 003.png

圖3  EKF 2D定位結(jié)果

圖像 004.png

圖4  ARKF定位結(jié)果

5 結(jié)束語

  為解決GPS定位過程中靜態(tài)零頻差多徑帶來的困擾,通過量化基帶多徑抑制后的多徑殘留模型,即多徑呈現(xiàn)“矩形”分布,基于該殘留模型提出了測(cè)量誤差協(xié)方差進(jìn)行開窗擬合的估計(jì)方法,以該方法估計(jì)的協(xié)方差作為自適應(yīng)參數(shù),用于擴(kuò)展卡爾曼濾波定位解算,得到更準(zhǔn)確的估計(jì)接收機(jī)的位置、速度等狀態(tài),降低多徑對(duì)定位精度影響。通過仿真表明,本文的自適應(yīng)估計(jì)多徑殘留的擴(kuò)展卡爾曼濾波(ARKF)能有效抑制零頻差短多徑影響,ARKF明顯抑制了靜態(tài)多徑造成的“拖尾”效應(yīng),定位精度顯著高于EKF算法。

  參考文獻(xiàn)

  [1] BRAASCH M S,VAN DIERENDONCK A J.GPS receiver archi-tectures and measurements[J].Proceedings of the IEEE,1999,87(1):48-64.

  [2] RAY J K.Mitigation of GPS code and carrier phase multi-path effects using a multiantenna system[D].Canada:University of Calgary,2000.

  [3] ASMA R,NICOLAS V,JULIETTE M,et al.Using dirichlet process mixtures for the modeling of GNSS pseudorange errors in urban canyon[C].Proceedings of 22nd International Meeting of the Satellite Division of The Insttute of Naviga-tion(ION GPS 2009),2009:2391-2399.

  [4] SAEED D,ALI B.GNSS interference and multipath sup-pression using an antenna array[C].ION GNSS 21st.Portland,OR,2011:1507-1541.

  [5] MEINHOLD R J,SINGPURWALLA N D.Understanding thekalman filter[J].The American Statistician,1983,37(2):123-127.

  [6] 楊長(zhǎng)林,柏秀亮.新息自適應(yīng)區(qū)間Kalman濾波算法及其應(yīng)用[J].傳感器與微系統(tǒng),2012,31(11):132-135.

  [7] BISHOP G,WELCH G.An introduction to the kalman filter[C].Proceding of SIGGRAPH,2001,8:41.

  [8] YAMAGUCHI S,TANAKA T.GPS standard positioning using Kalman filter[C].In:SICE-ICASE,2006.International Joint Conference.IEEE,2006:1351-1354.

  [9] YU W.Selected GPS receiver enhancements for weak signal acquisition and tracking[D].Canada:Calgary,2007.

  [10] 魯平,趙龍,陳哲.改進(jìn)的Sage-Husa自適應(yīng)濾波及其應(yīng)用[J].系統(tǒng)仿真學(xué)報(bào),2007,19(15);3503-3505.

  [11] 張迎春,李璟璟,吳麗娜,等.模糊自適應(yīng)無跡卡爾曼濾波方法用于天文導(dǎo)航[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2012(1).

  [12] 田甜,王愛華,安建平,等.一種基于新息自適應(yīng)卡爾曼濾波的載波跟蹤環(huán)路[J].第二屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集,2011.

  [13] 謝鋼.GPS原理與接收機(jī)設(shè)計(jì)[M].北京:電子工業(yè)出版社,2009:127-153.

  [14] 劉基余.GPS衛(wèi)星導(dǎo)航定位原理與方法[M].北京:科學(xué)出版社,2003.

  [15] 劉亞歡,田宇,李國(guó)通.基于最大似然估計(jì)的GPS 多徑估計(jì)[J].宇航學(xué)報(bào),2009,30(4):1466-1471.

  


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。