《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 面向車載網(wǎng)的基于AODV優(yōu)化路由協(xié)議的研究
面向車載網(wǎng)的基于AODV優(yōu)化路由協(xié)議的研究
2014年電子技術(shù)應(yīng)用第12期
葉 波
(湖北工業(yè)職業(yè)技術(shù)學(xué)院 汽車工程系,湖北 十堰442000)
摘要: 車載網(wǎng)VANETs (Vehicular ad hoc networks)屬于新型的通信模型,其可實現(xiàn)車間通信和車與基礎(chǔ)設(shè)施通信。由于VANETs節(jié)點密度動態(tài)變化,節(jié)點的快速移動、移動模型的局限性等特點,為VANETs的數(shù)據(jù)傳輸提出挑戰(zhàn)。鑒于此,提出優(yōu)化的按需距離矢量AODV(Ad Hoc On demand Distance Vector)方案IAODV(Improved AODV)。在城市環(huán)境中,AODV在端到端傳輸時延、數(shù)據(jù)包丟失率方向性能較差。為此,IAODV采用限定源節(jié)點的路由跳數(shù),降低AODV的端到端傳輸時延,同時為源節(jié)點提供備份路由,從而改善數(shù)據(jù)包丟失率。仿真結(jié)果表明,與AODV協(xié)議相比,IAODV在端到端傳輸時延、數(shù)據(jù)包丟失率得到有效提升。
中圖分類號: TP393
文獻標(biāo)識碼: A
文章編號: 0258-7998(2014)12-0110-05
AODV-based on improved routing for vehicular Ad hoc networks
Ye Bo
Department of Automotive Engineering, Hubei Industrial Polytechnic,Shiyan 442000,China
Abstract: Vehicular ad hoc network(VANETs) is a new communication paradigm that enables the vehicle to vehicle and vehicle to infrastructure. There is a challenge for transmit data due to inherent characteristics such as unpredictable node density, fast movement of vehicles, constrained mobility. In this paper, the improved Ad Hoc On demand Distance Vector(IAODV) is proposed. The performance of AODV is not good in term of end to end delay and dropped packets in city scenarios. Therefore, in IAODV, it uses the mechanism that limited source routing up to two hop in order to decrease the end to end delay. Moreover, it utilizes other mechanism that backup route between source node and destination node in order to decrease packet loss ratio. Compared with AODV, results show that the performance of SIAODV is improves significantly in term of packet loss ratio and end-to-end delay.
Key words : hop count;backup route;AODV;routing protocol;VANETs

0 引言

  近年來,車載網(wǎng)VANETs(Vehicular ad hoc networks)得到廣泛關(guān)注。由于車輛的快速移動以及動態(tài)的通信環(huán)境,導(dǎo)致通信路徑頻繁斷裂,阻礙車間通信的連續(xù)性和流暢性。這為VANETs的路由協(xié)議提出挑戰(zhàn)[1]。近幾年,研究者針對VANETs提出不同策略的路由機制。這些路由機制可分兩類:基于位置(location-based)和基于拓撲(topology-based)的路由。這些路由通過一系列的節(jié)點實現(xiàn)數(shù)據(jù)的交互。在數(shù)據(jù)傳輸階段,有不斷的中間節(jié)點參與數(shù)據(jù)的轉(zhuǎn)發(fā)。基于拓撲路由又可為先應(yīng)式、反應(yīng)式和混合式路由。按需距離矢量AODV[2](Ad Hoc On demand Distance Vector)路由廣泛應(yīng)用于VANETs。AODV在數(shù)據(jù)包分組率、歸一化路由開銷方面有較好的性能,但是其端到端傳輸時延、數(shù)據(jù)包丟失率比其他的基于拓撲路由要差。然則,動態(tài)資源路由選擇(Dynamic Source Routing)具有低的端到端傳輸時延;按需多徑距離矢量AOMDV[3](Ad Hoc On demand Multipath Distance Vector)具有低的數(shù)據(jù)包丟失率。

  本文以AODV為基礎(chǔ),提出AODV的改進方案IAODV(Improved AODV)。設(shè)計IAODV的目的在于降低端到端傳輸時延以及數(shù)據(jù)包丟失率,同時不損害AODV原有的分組投遞率和歸一化路由開銷的路由性能。因此,IAODV結(jié)合了DSR、AOMDV的路由特性。

1 IAODV方案

  受參考文獻[4]的方案以及參考文獻[5]提出的隨機移動模型的激勵,本文提出IAODV(Improved AODV)方案。IAODV的基本思想:數(shù)據(jù)通信僅為兩跳,并為源節(jié)點和目的節(jié)點間作備份路由(backup route)。IAODV結(jié)合了DSR和AOMDV的路由協(xié)議的機制。與AODV相比,IAODV在車間通信V2V數(shù)據(jù)分發(fā)階段能向用戶提供及時、準(zhǔn)確的信息。IAODV實施過程分兩步:路由發(fā)現(xiàn)(route discovery)和路由維護(route maintenance)。

  在路由發(fā)現(xiàn)階段,與AODV不同,IAODV采用新的機制。在路由請求階段(route request phase),源節(jié)點限定為兩跳;在路由應(yīng)答階段(route reply phase),為源節(jié)點、目的節(jié)點間存儲備份路由。

  此外,在路由維護階段,也與AODV不同,IAODV采用新的機制。如果當(dāng)前的路由(primary route)失敗,源節(jié)點將使用backup route。如果backup route本身也失敗,則將重新啟動路由發(fā)現(xiàn)階段。

  1.1 路由請求

  AODV收集的路由信息是有限的,并且路由學(xué)習(xí)(route learning)僅限于源節(jié)點。這將導(dǎo)致AODV在路由決策過程中產(chǎn)生大量的泛洪包,增加了額外的網(wǎng)絡(luò)負擔(dān)[6]。由于IAODV結(jié)合了AODV和DSR的路由發(fā)現(xiàn)階段的特點,與AODV相比,IAODV具有低時延和低的路由負擔(dān)。為了結(jié)合IAODV的路由機制,將AODV的RREQ(Route Request)數(shù)據(jù)的格式進行修改,在原有的基礎(chǔ)上添加了兩項信息,如圖1的陰影部分。

001.jpg

  對AODV的RREQ數(shù)據(jù)包修改程序如下:

  node i receives a RREQ packet

  If node i is the destination node then Reply RREP Packet

  Else

  If node i is second node then

  Building a reverse link in routing table for source node

  Append its node ID and sequence number and

  rebroadcast the Packets

  Else

  If exists a route in table then

  If check for better route then

  Update existing route in table

  End If

  Discard Packet

  Else

  Building a reverse link in routing table for source

  node, and Building a reverse link in routing table for

  second node and Rebroadcast the Packets

  End If

  End If

  End If

  1.2 路由應(yīng)答

  與AOMDV的多條路徑類似,IAODV中每個源節(jié)點均提供一條至目的節(jié)點可選擇路由(alternative route)。為此,對AODV中的路由應(yīng)答階段進行修改,在路由表中增添了兩項功能:在路由表中尋找alternative route;在路由表項中添加了一項標(biāo)志(flag),以標(biāo)識備份路徑(backup path)。程序算法如下:

  node i receives a RREP packet

  If node i is the  source node then

  If exist an alternative route in table then

  If check for better route then

  Update existing route in table

  End If

  Else

  If exist a primary route then

  If check for better route then

  Add route as backup path

  Else

  Add route as primary route

  End If

  End If

  End If

  Discard RREP

  Else

  If primary route exists then

  If check for better route then

  Update route and Forward RREP

  Else

  Discard RREP

  End If

  Else

  Add the route in table and Forward RREP

  End If

  End If

  1.3 路由維護

  在路由維護階段,節(jié)點修復(fù)局部的鏈路從而轉(zhuǎn)發(fā)數(shù)據(jù)包。當(dāng)節(jié)點發(fā)現(xiàn)鏈路斷裂,立即通知源節(jié)點。如果源節(jié)點的路由表中存有可用的備份路由,數(shù)據(jù)包將沿著此備份路由傳輸。此時無需啟動路由發(fā)現(xiàn)階段。如果在路由表不存在可用的備份路由,就需重新啟動路由發(fā)現(xiàn)階段。路由維護階段的算法如下:

  node i receives a RERR packet

  If the entry of the unreachable destination exists then

  Remove entry in the routing table and

  Node i start local repair

  If  node i detecting link failure then

  Notify link failure to source node

  If Backup path exists in routing table then

  Forward data with new path

  Else

  Initiate route discovery procedure

  End If

  Else

  Forward the data

  End If

  End If

2 城市移動模型

  本文利用MOVE產(chǎn)生城市街道的移動模型。MOVE是以SUMO[7]為平臺的開放性車輛仿真軟件。車輛移動模型是指在仿真期間車輛沿著道路移動,并設(shè)置交叉路口、堵塞等情況,模擬車輛行駛的真實環(huán)境。

002.jpg

  如圖2所示,由4條水平道路、4條垂直道路構(gòu)成的城市場景。該場景有12交叉點。每條道路長為1 500 m,寬為10 m。道路均是雙向的單車道。規(guī)定車輛行駛的最大速度為60 km/h。在交叉路口設(shè)有交通燈,車輛依據(jù)紅綠燈行駛,且隨機左、右轉(zhuǎn)。

3 系統(tǒng)仿真

  本節(jié)分析提出的IAODV的路由性能。采用網(wǎng)絡(luò)仿真工具NS2.34[8]作為網(wǎng)絡(luò)仿真平臺。NS2(Network Simulator,version 2)是一種面向?qū)ο蟮木W(wǎng)絡(luò)仿真器,本質(zhì)上是一個離散事件模擬器。由UC Berkeley開發(fā)而成,使用C++和Otcl作為開發(fā)語言。通過NS2能分析動態(tài)結(jié)構(gòu)以及網(wǎng)絡(luò)傳輸性能。

  3.1 性能指標(biāo)

  為了更完善地評價IAODV的路由性能,本文選用平均的端到端傳輸時延EED(Average End to End Delay)、數(shù)據(jù)包丟失率PLR(Packet Loss Ratio)、 分組投遞率PDR(Packet Delivery Ratio)、歸一化的路由開銷NRL(Normalized Routing Load)四項性能指標(biāo)[9]。

  3.2 網(wǎng)絡(luò)仿真參數(shù)


007.jpg

  仿真參數(shù)如表1所示。采用NS2進行網(wǎng)絡(luò)仿真。所有車輛的移動模型均有MOVE產(chǎn)生。

  在仿真過程中,假定3種仿真場景分別為:scene 1、scene 2、scene 3。每個場景的參數(shù)分別如表2~4所示。

003.jpg

  如表2所示,scene 1模擬了一個車輛密度動態(tài)變化的場景。

  如表3所示,scene 2模擬了一個動態(tài)連接的場景。

  如表4所示,scene 3模擬了一個車輛速度動態(tài)變化的場景。

  3.3 scene 1場景仿真

  scene1場景仿真結(jié)果如圖3所示。

004.jpg

  由圖3(a)可見,IAODV的端到端傳輸時延比AODV下降了33.928%。圖3(b)可見,IAODV的數(shù)據(jù)包丟失率下降了55.655%。圖3(c)、3(d)分別表明IAODV和AODV在分組投遞率、歸一化的路由開銷,這說明IAODV在提高端到端傳輸時延、數(shù)據(jù)包丟失率時,并沒有降低分組投遞率和增加路由負擔(dān)。

  3.4 scene 2場景仿真


005.jpg

  scene 2場景仿真結(jié)果如圖4所示。圖4(a)所示,與AODV相比,IAODV的端到端傳輸時延提高了30.046%。但是,與scene1場景相比,scene 2場景中的端到端傳輸時延提高近50%。從圖4(b)可知,在scene 2場景下,IAODV的數(shù)據(jù)包丟失率下降了54.517%。但是AODV的數(shù)據(jù)包丟失率反而增加,這也說明AODV難以抵御動態(tài)連接。圖4(c)、4(d)分別表明IAODV和AODV在在分組投遞率、歸一化的路由開銷性能相差不大,這說明IAODV在提高端到端傳輸時延、數(shù)據(jù)包丟失率時,并沒有降低分組投遞率、路由負擔(dān)的路由性能。

  3.5 scene 3場景仿真


006.jpg

  圖5顯示了scene 3場景的AODV、IAODV的路由性能曲線。從圖(a)、(b)可知,IAODV的端到端傳輸時延、數(shù)據(jù)包丟失率比AODV均得到改善。端到端傳輸時延下降了44.197%;數(shù)據(jù)包丟失率下降到56.729%。同樣,圖5(c)、(d)表明IAODV在提升端到端傳輸時延、數(shù)據(jù)包丟失率性能時并沒有降低分組投遞率、路由負擔(dān)的性能。

4 結(jié)論

  本文針對車輛的高速移動、VANETS拓撲結(jié)構(gòu)變化不定、路由斷裂率高以及穩(wěn)定性差等問題,提出了基于AODV的改進方案IAODV。該方案以AODV為基礎(chǔ),并對其進行優(yōu)化,使得IAODV更適合車聯(lián)網(wǎng)VANETs環(huán)境。 IAODV在路由決策時,限定源節(jié)點路由為兩跳,同時為源節(jié)點提供備份路由,從而減少了通信跳數(shù),并為斷裂路由提供了備份路由,降低了數(shù)據(jù)包丟失率。為此對AODV的路由發(fā)現(xiàn)、維護階段信息的進行修改。仿真結(jié)果表明,改進后的AODV更能防御VANETS拓撲結(jié)構(gòu)的變化。同時,端到端傳輸時延得以下降,改善了數(shù)據(jù)包丟失率。

參考文獻

  [1] SUTARIYA D,PRADHAN S.Evaluation of routing protocolsfor V ANETs in city scenarios[C].International Conference on Emerging Trends in Networks and Computer Communi-cations(ETNCC),April 2011.

  [2] PERKINS C,BELDING-ROYER E,DAS S.Ad hoc on-de-mand distance vector(AODV) routing[Z].RFC 3561,July 2003.

  [3] BIRADAR R,MAJUMDER K,PUTTAMADAPPA S K S.Performance evaluation and comparison of AODV and AOMDV[J].International Journal on ComputerScience and Engineering,2010,2(2):373-377.

  [4] Hu Yongjun,Lu Tao,Shen Junliang.An improvement of theroute discovery process in AODV for Ad Hoc network[C].International Conference on Communications and Mobile Computing(CMC),2010:458-461.

  [5] Luo Chao,Li Ping.An efficient routing approach as an ex-tension of the AODV protocol[C].International Conference onFuture Computer and Communication(ICFCC),2010:95-99.

  [6] KULKARNI S A,RAO G R.Vehicular Ad Hoc network mobility models applied for reinforcement learning routing algorithm[J].Contemporary Computing Communications in Computer and Information Science,2010,95(5):230-240.

  [7] MOVE(MObility model generator for VEhicular networks).Rapid generation of realistic simulation for VANET[DB/OL].http://iens l.csie.ncku.edu.tw/MOVE/index.htm.

  [8] The ns-2 network simulator[DB/OL].http://www.isi.edu/nsnam/ns/.

  [9] 姜偉.LTE-A中協(xié)作多點傳輸?shù)姆执胤桨秆芯縖J].微型機與應(yīng)用,2014,33(2):55-59.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。