《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 二級倒立擺的參數(shù)自校正模糊PI控制
二級倒立擺的參數(shù)自校正模糊PI控制
2014年微型機(jī)與應(yīng)用第12期
李 露1,李 峰2,鄧雄峰1
1.陜西科技大學(xué) 電氣與信息工程學(xué)院,陜西 西安2.聚泰實(shí)業(yè)香港有限公司,廣東 深圳
摘要: 為了解決高階次、多變量、非線性、強(qiáng)耦合的直線二級倒立擺的穩(wěn)定控制問題,設(shè)計(jì)了一種參數(shù)自校正模糊PI控制器算法。結(jié)合線性二次型最優(yōu)調(diào)節(jié)器(LQR)方法,設(shè)計(jì)了融合函數(shù),降低了模糊控制器的維數(shù)、減少了控制器規(guī)則數(shù)、實(shí)現(xiàn)了參數(shù)在線自校正,進(jìn)而提高了控制器的性能。借助固高科技倒立擺硬件平臺,采用MATLAB仿真及實(shí)時(shí)控制,系統(tǒng)均能在較短時(shí)間內(nèi)達(dá)到穩(wěn)定,且控制效果較好,滿足了穩(wěn)定性和魯棒性要求。
Abstract:
Key words :

  摘  要: 為了解決高階次、多變量、非線性、強(qiáng)耦合的直線二級倒立擺的穩(wěn)定控制問題,設(shè)計(jì)了一種參數(shù)自校正模糊PI控制器算法。結(jié)合線性二次型最優(yōu)調(diào)節(jié)器(LQR)方法,設(shè)計(jì)了融合函數(shù),降低了模糊控制器的維數(shù)、減少了控制器規(guī)則數(shù)、實(shí)現(xiàn)了參數(shù)在線自校正,進(jìn)而提高了控制器的性能。借助固高科技倒立擺硬件平臺,采用MATLAB仿真及實(shí)時(shí)控制,系統(tǒng)均能在較短時(shí)間內(nèi)達(dá)到穩(wěn)定,且控制效果較好,滿足了穩(wěn)定性和魯棒性要求。

  關(guān)鍵詞: 二級倒立擺;參數(shù)自校正;模糊控制;融合函數(shù);LQR

  倒立擺系統(tǒng)廣泛地應(yīng)用在非線性控制理論和研究方面。對于不同的倒立擺類型,控制方法比較多,主要有:雙PID及自適應(yīng)PID控制[1]、LQR及自適應(yīng)LQR[2]、LQG控制[3]、模糊邏輯控制[5-6]、自適應(yīng)滑模模糊控制[7]、模糊聚類[8]、神經(jīng)控制[9]、遺傳算法[10]等,這些方法均能有效地控制倒立擺系統(tǒng)。但這些控制算法有其優(yōu)缺點(diǎn),同樣復(fù)雜的控制算法,實(shí)時(shí)控制效果不是很好,增加了實(shí)現(xiàn)的難度。PID控制器能夠有效地處理穩(wěn)定狀態(tài)響應(yīng),但是,要想精確地調(diào)整PID控制器的增益是相當(dāng)困難的;LQR算法在線性系統(tǒng)中能夠較好運(yùn)用,而在非線性較強(qiáng)的系統(tǒng)中也存在一些不足之處;參考文獻(xiàn)[5-8]在模糊邏輯控制的基礎(chǔ)上采用不同的算法,能夠有效地控制非線性系統(tǒng)。模型建立好之后,非線性系統(tǒng)總是線性化在平衡點(diǎn)附近。忽略其他次要部分,這也會(huì)導(dǎo)致大的誤差;遺傳算法控制能夠在全局范圍內(nèi)進(jìn)行優(yōu)化,具有更高的效率,但是也存在不足之處。其交叉和突變作用,不能夠確保個(gè)體具有較好的適應(yīng)度,給目標(biāo)函數(shù)的選取增加了困難。

  本文在總結(jié)模糊控制和LQR算法基礎(chǔ)上,設(shè)計(jì)了一種參數(shù)自校正模糊PI控制器。運(yùn)用LQR方法,設(shè)計(jì)了融合函數(shù),對模糊控制器進(jìn)行降階處理,實(shí)現(xiàn)參數(shù)在線自校正。通過仿真實(shí)驗(yàn)結(jié)果顯示,這種模糊控制方法能有效控制二級倒立擺系統(tǒng)。

  1 二級倒立擺物理模型

  在忽略空氣阻力、各種接觸摩擦之后,將二級倒立擺系統(tǒng)等效為小車,勻質(zhì)桿和質(zhì)量塊組成的剛性系統(tǒng)如圖1所示,物理參數(shù)如表1所示。

001.jpg

006.jpg

  KS)P0Z`PSPEDCQXP3JM@`3A.png

 

  通過調(diào)用MATLAB函數(shù)可以判斷,二級倒立擺系統(tǒng)是能控能觀的。由于開環(huán)極點(diǎn)為p1,2,3,4=0、p5,6=±6.2074j,可知系統(tǒng)是不穩(wěn)定的。要使系統(tǒng)穩(wěn)定,就需要外加控制器。

  2 參數(shù)自校正模糊PI控制器的設(shè)計(jì)

  2.1 融合函數(shù)的設(shè)計(jì)

  二級倒立擺系統(tǒng)有小車位移和速度、下擺角度和角速度、上擺角度和角速度6個(gè)變量,如果將這6個(gè)變量作為模糊控制器的輸入,每個(gè)輸入變量在論域范圍內(nèi)取7個(gè)模糊子集,則會(huì)出現(xiàn)76=117 649條推理規(guī)則,這會(huì)大大影響模糊控制器的性能。由于線性系統(tǒng)具有可融合的特點(diǎn),在此將二級倒立擺系統(tǒng)6個(gè)變量融合成為綜合誤差E和綜合誤差變化量EC,作為模糊控制器的輸入,則融合函數(shù)設(shè)計(jì)如下[12]。

  (1)利用現(xiàn)代控制中的LQR方法,通過仿真試湊法選取使二級倒立擺系統(tǒng)的二次型性能指標(biāo)J=[XTQX+UTRU]dt為最小值的Q、R(Q、R為適當(dāng)維數(shù)的正定加權(quán)矩陣),從而可以計(jì)算得出狀態(tài)反饋矩陣:

  234.jpg

  2.2 參數(shù)自校正模糊PI控制器的設(shè)計(jì)

  在基本模糊控制器基礎(chǔ)上,設(shè)計(jì)了參數(shù)自校正模糊PI控制器[5-8]。經(jīng)上述融合函數(shù)降維后,根據(jù)圖2所示的模糊控制二級倒立擺結(jié)構(gòu)圖,選擇合適的量化因子Ke、Kec和比例因子Ku。E、EC作為模糊控制器1的輸入量,U作為輸出控制量。輸入量和輸出量均采用三角型隸屬度函數(shù)進(jìn)行模糊化,每個(gè)語言變量的論域?yàn)閧-6,6},語言值設(shè)為{PB,PM,PS,ZE,NS,NM,NB},分別表示{正大,正中,正小,零,負(fù)小,負(fù)中,負(fù)大},以重心法解模糊化[13]。模糊控制器1控制規(guī)則表如表2所示。

007.jpg

  為了對模糊控制器1的參數(shù)Ke、Kec、Ku進(jìn)行自校正,引入模糊控制器2,其調(diào)整方法為:當(dāng)系統(tǒng)的誤差E和誤差的變化EC較大時(shí),應(yīng)加快系統(tǒng)響應(yīng)速度,此時(shí)需要降低量化因子Ke和Kec來降低E和EC輸入量的分辨率,同時(shí)加大比例因子Ku,使響應(yīng)加快;當(dāng)E和EC較小時(shí),說明系統(tǒng)已經(jīng)趨于穩(wěn)定,此時(shí)要求提高系統(tǒng)精度,要增大量化因子Ke和Kec來提高對輸入變化的分辨率,同時(shí)減小比例因子,以減小超調(diào)量。此處Ke、Kec增加的倍數(shù)與比例因子Ku的減小倍數(shù)相同。

002.jpg

  選擇輸入量和輸出量均為三角型隸屬度函數(shù)進(jìn)行模糊化,取Ke、Kec的論域?yàn)閧-6,6},在論域范圍內(nèi)把E、EC劃分為{NB,NS,NM,ZE,PS,PM,PB}7個(gè)模糊子集,取定義Ku的論域?yàn)閧0.125,0.25,0.5,1,2,4,8},模糊子集定義為{AH,AM,AL,KO,CL,CM,CH},分別表示{高放,中放,低放,不變,低縮,中縮,高縮},以重心法解模糊化。模糊控制器2控制規(guī)則表如表3所示。

008.jpg

  其中,參數(shù)調(diào)整方法為:(1)以原始的Ke、Kec對E、EC進(jìn)行量化得到E′、EC′;(2)將E′、EC′作為模糊控制器2的輸入量,輸出控制量為調(diào)整倍數(shù)M

  對整定得出的控制量u與系統(tǒng)輸入量作差,作為PI控制器的輸入,再將PI控制器的輸出作為二級倒立擺狀態(tài)模型的輸入,即可以對二級倒立擺系統(tǒng)進(jìn)行仿真研究。

  3 仿真結(jié)果分析


003.jpg


  在Simulink環(huán)境中建立的二級倒立擺的參數(shù)自校正模糊PI和模糊控制器的仿真結(jié)構(gòu)圖如圖3所示。

  根據(jù)式(1),取Q=diag(1000,500,500,0,0,0),R=1,采用LQR方法得到狀態(tài)反饋矩陣K為:

  K=[31.622 8  113.123 5  -227.437 8

  28.301 8  1.071 5  -38.755 3]

  代入式(3),得融合函數(shù)為:

004.jpg

  取系統(tǒng)的初始值為零,設(shè)置仿真時(shí)間為5 s,仿真步長為5 ms,通過多次調(diào)整參數(shù),得到兩種控制器仿真曲線圖如圖4所示。由圖4可知,小車最終距離初始位置10 cm左右處保持平衡,下擺擺角偏離平衡位置最大值為0.05 rad,上擺擺角偏離平衡位置最大值為0.003 rad,系統(tǒng)能在2.5 s左右時(shí)間內(nèi)達(dá)到并維持平衡,由此可見控制效果比較理想。比較兩者的仿真結(jié)果可知,基于融合函數(shù)的參數(shù)自校正模糊PI控制器不僅能使小車維持平衡,而且系統(tǒng)的響應(yīng)速度也較快,可以用來對二級倒立擺實(shí)物系統(tǒng)實(shí)時(shí)控制。

  在基本模糊控制器結(jié)構(gòu)上,設(shè)計(jì)了一種參數(shù)自校正模糊PI控制器,通過融合函數(shù)對模糊控制器的輸入進(jìn)行降維,避免了控制規(guī)則過多而影響控制性能的缺點(diǎn),同時(shí)又對模糊控制器的量化因子和比例因子進(jìn)行在線校正調(diào)整,達(dá)到了自校正目的。為了測試倒立擺系統(tǒng)魯棒性,選用了外部測試方法(即施加外力與系統(tǒng)),系統(tǒng)能夠很快校正偏差,回到平衡位置。仿真結(jié)果和圖5實(shí)時(shí)控制曲線表明,這種控制器能有效地控制二級倒立擺系統(tǒng),具有良好的穩(wěn)態(tài)性能,響應(yīng)速度較快,魯棒性較好。

005.jpg

  參考文獻(xiàn)

  [1] GEORGE J,KRISHNA B,GEORGE V I,et al.Design of adaptive pid controller based on maximum modulus theoremfor inverted pendutum on a cart[J].Sensors & Transducers,2012,145(10):163-171.

  [2] Zhang Jiaolong,Zhang Wei.LQR self-adjusting based controlfor the planar double inverted pendulum[J].Physics Procedia,2012(24):1669-1676.

  [3] EIDE R,EGELID P M,STAMSO A,et al.LQG control for balancing an inverted pendulum mobile robot[J].Intelligent Control and Automation,2011,2(2):160-166.

  [4] Yi Jianqiang,YUBAZAKI N,HIROTA K.A new fuzzy controller for stabilization of parallel-type double inverted pendulum system[J].Fuzzy Sets and Systems,2002,126(1):105-119.

  [5] KIZIR S,BINGUL Z,OYSU C.Fuzzy control of a real timeinverted pendulum system[J].Journal of Intelligent & Fuzzy Systems,2010(21):123-133.

  [6] Huang Chenghao,Wang Wenjuan,Chiu Chihhui.Design andimplementation of fuzzy control on a two-wheel inverted pendulum[J].IEEE Transaction on Industrial Electronics,2011,58(7):2988-3001.

  [7] Duan Xuechao,Qiu Yuanying,Duan Baoyan.Adaptive slidingmode fuzzy control of planar inverted pendulum[J].Control and Decision,2007,22(7):774-777.

  [8] SIVARAMAN E,ARULSELVI S.Modeling of an inverted pendulum based on fuzzy clustering techniques[J].Expert Systems with Applications,2011,38(11):13942-13949.

  [9] HASSANZADEH I,MOBAYEN S.PSO-based controller design for rotary inverted pendulum system[J].Journal of Applied Science,2008,8(16):2907-2912.

  [10] Ping Zhaowu,Huang Jie.Approximate output of spherical inverted pendulum by neural network control[J].Neurocomputing,2012,85(5):38-44.

  [11] 宋君烈,肖軍,徐心和.倒立擺系統(tǒng)的Lagrange方程建模與模糊控制[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2002,23(4):333-337.

  [12] 邢景虎,陳其工,江明.二級倒立擺基于融合函數(shù)的模糊控制[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,34(8):1155-1158.

  [13] 蔡自興.智能控制(第二版)[M].北京:電子工業(yè)出版社,2004.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。