文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2012)11-0119-03
寬帶信號(hào)DOA估計(jì)是陣列信號(hào)處理的一個(gè)重要分支,在目標(biāo)跟蹤、智能天線系統(tǒng)等方面有重要的應(yīng)用。目前寬帶信號(hào)DOA估計(jì)算法主要有兩大類:一類是非相干信號(hào)子空間法(ISM)[1],這類算法計(jì)算量大,分辨率低,且不能分辨相干信號(hào)源;另一類是相干信號(hào)子空間法(CSM)[2],這類算法分辨率高且能分辨相干信號(hào)源,但需要根據(jù)已知的預(yù)估計(jì)角度求解聚焦矩陣。
近幾年提出的通過(guò)稀疏信號(hào)表示[3-4]進(jìn)行DOA估計(jì)的算法(FOCUSS[5],l1-SVD[6]等)不必求信號(hào)的自相關(guān)矩陣并對(duì)其進(jìn)行特征值分解,也不必預(yù)先估計(jì)信號(hào)源個(gè)數(shù),且不需要對(duì)相關(guān)信號(hào)進(jìn)行解相關(guān)預(yù)處理。本文基于MMSE準(zhǔn)則提出寬帶信號(hào)DOA估計(jì)自回歸迭代算法,通過(guò)恢復(fù)信號(hào)的稀疏表示實(shí)現(xiàn)超分辨率寬帶信號(hào)DOA估計(jì)。
1 信號(hào)模型
寬帶信號(hào)的標(biāo)準(zhǔn)處理方法是將接收信號(hào)通過(guò)窄帶濾波器組得到不同頻率點(diǎn)的窄帶信號(hào)[3-5],再對(duì)其進(jìn)行后續(xù)處理。設(shè)有N個(gè)陣元的均勻直線陣列,相鄰陣元間距是入射信號(hào)最高頻率的半波長(zhǎng),遠(yuǎn)場(chǎng)寬帶信號(hào)從K (K≤N)個(gè)方向θ=[θ1,…,θK]到達(dá)陣列,通過(guò)D個(gè)中心頻率在寬帶信號(hào)頻率范圍內(nèi)的窄帶濾波器,得到D個(gè)不同頻率點(diǎn)的窄帶信號(hào),頻率點(diǎn)fd(1≤d≤D)處陣列單次快拍接收信號(hào)的表達(dá)式為:
間隔的增加,DOA個(gè)數(shù)估計(jì)在DOA間隔大于4°后收斂于真實(shí)值,DOA估計(jì)偏差在DOA間隔超過(guò)10°后為零。
本文基于MMSE準(zhǔn)則提出一種寬帶信號(hào)DOA估計(jì)算法,采用自回歸迭代方法恢復(fù)信號(hào)的稀疏表示,估計(jì)出波達(dá)方向的信號(hào)幅度,由此同時(shí)得到信號(hào)源個(gè)數(shù)和波達(dá)方向估計(jì),省去了對(duì)信號(hào)自相關(guān)矩陣的特征值分解和對(duì)相干信號(hào)的去相關(guān)預(yù)處理,具有超分辨率能力。仿真驗(yàn)證了新算法的有效性,對(duì)實(shí)際工程中寬帶信號(hào)DOA估計(jì)的算法設(shè)計(jì)提供了有益的參考。
參考文獻(xiàn)
[1] OTTERSTEN B, KAILATH T. Direction-of-arrival estimation for wide-band signals using the ESPRIT algorithm [J].IEEE Trans. Acoustics Speech and Signal Processing,1990,38(2):317-327.
[2] WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles arrival of multiple wide-band sources [J]. IEEE Trans. Acoustics Speech and Signal Processing, 1985, 33(4): 823-831.
[3] DONOHO D L,ELAD M,TEMLYAKVO V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans. Inf. Theory, 2006, 52(1):6-18.
[4] CHUNMEI Z, ZHONGKE Y, XIANGDONG C,et al. Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J]. Chinese Sci. Bull, 2005,50(23):2672-2677.
[5] GORODNITSKY I, RAO B. Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm[J]. IEEE Trans. Signal Process,1997,45(3):600-616.
[6] MALIOUTOV D, CETIN M, WILLSKY A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans. Signal Process, 2005,53(8):3010-3022.