《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > 使用LabVIEW和CompactRIO開發(fā)腿輪混合式移動(dòng)機(jī)器人
使用LabVIEW和CompactRIO開發(fā)腿輪混合式移動(dòng)機(jī)器人
摘要: 使用NI LabVIEW和CompactRIO以及各種I / O模塊將機(jī)械、電子及軟件開發(fā)快速集成到功能型機(jī)器人原型。
Abstract:
Key words :

項(xiàng)目背景

腿部和車輪這兩種方法在地面運(yùn)動(dòng)平臺上被廣泛采用。  經(jīng)過漫長的演變過程,大多數(shù)陸地動(dòng)物的腿部都靈活有力,并能夠快速順暢地在不平坦的天然地形上奔馳。 在另一方面,人類發(fā)明了平地上專用的運(yùn)動(dòng)車輪,其出色的功率效率和在平地上高速的流暢運(yùn)行是腿部運(yùn)動(dòng)無法比擬的。

由此,來自國立臺灣大學(xué)的仿生機(jī)器人實(shí)驗(yàn)室(BioRoLa)團(tuán)隊(duì)致力于設(shè)計(jì)一個(gè)腿輪混合式機(jī)器人,它結(jié)合了車輪和腿部的移動(dòng)性,在平坦和惡劣環(huán)境下都能為室內(nèi)室外行走提供一個(gè)移動(dòng)平臺。

機(jī)械設(shè)計(jì)

大多數(shù)混合動(dòng)力平臺上不同的輪子和腿都有不同的裝置和激勵(lì)器,相比這些平臺,這款名為Quattroped的腿輪混合式移動(dòng)機(jī)器人采用了一種轉(zhuǎn)換機(jī)制,可將自身特定的一部分變形成為一個(gè)輪子或一條腿。 從幾何角度來說,一個(gè)輪子通常有一個(gè)圓形輪圈,而旋轉(zhuǎn)軸則位于輪圈中間。  輪圈與地面接觸,而旋轉(zhuǎn)軸與機(jī)器人身體上的一點(diǎn)相連,此點(diǎn)就是“髖關(guān)節(jié)”。 在一般情況下,輪式移動(dòng)時(shí)輪子在平地上運(yùn)動(dòng)并不斷旋轉(zhuǎn),車輪與地面的接觸點(diǎn)就位于髖關(guān)節(jié)下的一定距離處。相對而言,用腿移動(dòng)時(shí)腿部以周期性方式運(yùn)動(dòng),在髖關(guān)節(jié)和地面接觸點(diǎn)之間沒有特定的幾何配置;因此腿部在運(yùn)動(dòng)中的相對位置具有周期性頻繁變化的特點(diǎn)。

基于這一觀察發(fā)現(xiàn),將髖關(guān)節(jié)移出圓形輪圈中心并將連續(xù)運(yùn)動(dòng)模式改為其他運(yùn)動(dòng)模式,即能達(dá)到輪模式向腿模式的轉(zhuǎn)換。  這激發(fā)了我們?nèi)ピO(shè)計(jì)一種能直接控制圓形輪圈和髖關(guān)節(jié)的相對位置的模式,從而它既能進(jìn)行輪運(yùn)動(dòng)又能進(jìn)行腿運(yùn)動(dòng)。  由于圓形輪圈是一個(gè)二維的對象,實(shí)現(xiàn)這一目標(biāo)的最直接的方法是再增加一個(gè)自由度(DOF),沿著運(yùn)動(dòng)方向調(diào)節(jié)髖關(guān)節(jié)相對圓形輪圈的位置。  兩個(gè)自由度的運(yùn)動(dòng)也互相形成直角。  此外,無論是輪模式還是腿模式都能有效運(yùn)行同一組的驅(qū)動(dòng)功率。

機(jī)電一體化

我們采用NICompactRIO嵌入式控制系統(tǒng)作為機(jī)器人控制器,它包括一個(gè)400MHz的實(shí)時(shí)處理器和3M現(xiàn)場可編程門陣列(FPGA)。 FPGA直接連接NI C系列I/O模塊,這些模塊能從載板傳感器和激勵(lì)器獲得數(shù)據(jù)。  對于模擬I/O我們采用NI 9205NI 9264I/O模塊,對于數(shù)字I/O采用NI 9401NI 9403I/O模塊。FPGA與實(shí)時(shí)處理器相連,并通過IEEE 802.11無線方式與電腦進(jìn)行通訊。

機(jī)器人傳感器包括:馬達(dá)和功率放大器上用于健康監(jiān)測的溫度傳感器;用于電源管理的電壓和電流測量傳感器;用于腿輪配置校準(zhǔn)的霍爾(Hall)效應(yīng)傳感器;用于身體狀態(tài)測量的6軸慣性制導(dǎo)儀和2軸測斜儀;用于離地間隙測量的3個(gè)紅外距離傳感器。全球定位系統(tǒng)、視覺和激光測距儀等各種傳感器也被用于提高機(jī)器人的感應(yīng)能力。機(jī)器人上的激勵(lì)器包含8個(gè)用于驅(qū)動(dòng)的直流有刷電機(jī),2個(gè)用于前腿車輪轉(zhuǎn)動(dòng)的高扭矩RC伺服電機(jī),用于輪腿切換的四個(gè)小型RC伺服電機(jī)和四個(gè)小型直流有刷電機(jī)。

軟件

三個(gè)運(yùn)行LabVIEW 的計(jì)算核心(PC,實(shí)時(shí)系統(tǒng)和FPGA)負(fù)責(zé)不同的任務(wù)。 用戶操作PC,將高級指令(如機(jī)器人應(yīng)該以輪模式還是腿模式運(yùn)行)發(fā)送到NI CompactRIO控制器??刂破饕?kHz的循環(huán)速率運(yùn)行,將關(guān)于機(jī)器人健康的重要信息發(fā)送回來,并在PC上記錄狀態(tài)數(shù)據(jù)。 機(jī)器人軟件架構(gòu)包括各種狀態(tài)機(jī),每個(gè)狀態(tài)代表一種機(jī)器人行為。  其他需要高速信號交換的算法以10 kHz的循環(huán)率在FPGA上運(yùn)行。 包括直流電動(dòng)機(jī)、編碼器讀數(shù)以及基于PWM的RC伺服命令的比例-積分-微分(PID)控制。

機(jī)器人通電后,我們進(jìn)行電機(jī)校準(zhǔn),定義機(jī)器人每條腿輪上兩個(gè)活躍自由度的完全幾何配置。  通過匹配安裝在機(jī)器人身體上的霍爾效應(yīng)傳感器和安裝在腿輪內(nèi)部磁鐵的相對位置實(shí)現(xiàn)校準(zhǔn)。  我們可以在腿模式或輪模式下操作經(jīng)校準(zhǔn)過的機(jī)器人,這取決于當(dāng)前RIM配置(即為車輪或半圈腿模式)。 另外,我們也可以通過腿輪轉(zhuǎn)換來改變腿輪配置。  機(jī)器人輪模式下的行為包括站立、行駛和入座。 站立和入座為兩個(gè)瞬態(tài)狀態(tài),用以過度最初地面配置和行駛行為。  在行駛行為中,前進(jìn)速度和轉(zhuǎn)彎速率都連續(xù)可調(diào)。  同樣,當(dāng)機(jī)器人在腿模式下運(yùn)作時(shí),站立和入座行為也屬于瞬時(shí)狀態(tài)。  站立起來后的機(jī)器人可以執(zhí)行各種行為,包括步行、小跑、跨步、跨越障礙和爬樓梯。

NI軟硬件的益處

在一般情況下,機(jī)器人屬于高自由度的復(fù)雜系統(tǒng)。  機(jī)器人的成功發(fā)展需要花費(fèi)時(shí)間和精力來妥善整合各種機(jī)械、電氣和計(jì)算機(jī)系統(tǒng)。  來自國立臺灣大學(xué)BioRoLa團(tuán)隊(duì),主要由擁有機(jī)械工程背景的學(xué)生組成,他們需要一個(gè)可靠、模塊化、易于使用及良好集成的平臺。

經(jīng)過廣泛的研究,我們發(fā)現(xiàn)NI產(chǎn)品能為我們的應(yīng)用程序提供最佳解決方案,原因如下: LabVIEW為非編程背景的學(xué)生提供了直觀的圖形化流程圖表示方法,可以讓他們輕松建立過程圖并作為解決方案,然后再將過程圖轉(zhuǎn)化為軟件。 能在Windows,RTOS和基于FPGA的目標(biāo)上使用相同的圖形化開發(fā)環(huán)境也極其有幫助。  由于開發(fā)控制器軟件時(shí)我們不必花時(shí)間學(xué)習(xí)底層的編程語法,因而能夠花更多的時(shí)間專注于我們設(shè)計(jì)的機(jī)械部分。

“對于移動(dòng)機(jī)器人的開發(fā)來說,其大小,重量及性能都非常重要,因此堅(jiān)固的模塊化CompactRIO系統(tǒng)非常適合用于開發(fā)。 LabVIEW和NI硬件之間定義良好的兼容性顯著地減少了開發(fā)者執(zhí)行系統(tǒng)集成的時(shí)間和精力。”

未來計(jì)劃

憑借NI LabVIEW圖形化系統(tǒng)設(shè)計(jì)和NI CompactRIO,一支機(jī)械工程學(xué)生團(tuán)隊(duì)設(shè)計(jì)出了一個(gè)擁有優(yōu)雅軟件構(gòu)造的復(fù)雜機(jī)電一體化系統(tǒng),對于今后的進(jìn)一步開發(fā)擴(kuò)展也很方便。  在硬件方面,我們正在將各種傳感器融合到當(dāng)前的機(jī)電化系統(tǒng)中,以提高機(jī)器人的感應(yīng)能力。  在動(dòng)作方面,我們正在完善和開發(fā)具有閉環(huán)控制功能的腿部行為,以提高機(jī)器人在各種具有挑戰(zhàn)性的地形上的移動(dòng)能力,并開發(fā)其腿部動(dòng)態(tài)步態(tài)。

鳴謝

作者誠摯感謝NI臺灣對于他們在設(shè)備支持和技術(shù)咨詢上的大力支持。 這項(xiàng)工作得到了97-2218-E-002-022和99-2218-E-002-012-合同下國家科學(xué)委員會(NSC)臺灣以及98R0331合同下國立臺灣大學(xué)的支持。

 

Author Information:
Pei-Chun Lin
Department of Mechanical Engineering, National Taiwan University
No.1 Roosevelt Rd. Sec.4, ME, Eng. Bldg. room503-3
Taipei 106, Taiwan
Tel: 886-2-3366-9747
peichunlin@ntu.edu.tw

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。