《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 超高頻RFID標(biāo)簽芯片基帶處理器的低功耗設(shè)計(jì)
超高頻RFID標(biāo)簽芯片基帶處理器的低功耗設(shè)計(jì)
來(lái)源:電子技術(shù)應(yīng)用2011年第1期
付 然,文光俊,咸 凜
電子科技大學(xué) 通信與信息工程學(xué)院射頻集成電路研究室,四川 成都611731
摘要: 設(shè)計(jì)了一種符合ISO18000-6B協(xié)議的超高頻無(wú)源電子標(biāo)簽的數(shù)字基帶處理器,芯片采用TSMC 0.18 μm 1P5M嵌入式EEPROM的混合CMOS工藝實(shí)現(xiàn),己成功通過(guò)流片,并對(duì)其進(jìn)行了驗(yàn)證和測(cè)試。從測(cè)試結(jié)果看,本芯片完成了符合ISO18000-6B協(xié)議的所有強(qiáng)制命令以及部分建議命令,達(dá)到完成標(biāo)簽盤(pán)存操作、讀寫(xiě)操作以及鎖存和查詢鎖存等基本功能。
中圖分類號(hào): TN4
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2011)01-0052-03
Design of a low-power baseband processor for passive UHF RFID tags
Fu Ran,Wen Guangjun,Xian Lin
RFIC Lab.CICS, SCIE,University of Electronic Science and Technology of China,Chengdu 611731,China
Abstract: In this paper, a low-power digital baseband processor design for an UHF passive RFID tag is presented, which is compliant with the ISO18000-6B UHF RFID protocol. It gives a new architecture of the digital core. Advanced low power design approaches are adopted.The chip has been designed and fabricated successfully in TSMC 0.18um CMOS mixed signal process. Test results show that it can support all the mandatory commands and complete the tag inventory,read,write,as well as lock and query_lock operations which are required in ISO18000-6B UHF RFID protocol.
Key words : UHF;tag;low-power;RFID


    射頻識(shí)別技術(shù)已被應(yīng)用到許多領(lǐng)域,如護(hù)照、交通運(yùn)輸、產(chǎn)品追蹤、汽車以及動(dòng)物識(shí)別等[1]。主要組成部分有: 電子標(biāo)簽、RFID閱讀器和后端處理系統(tǒng)。RFID電子標(biāo)簽由一個(gè)微小的標(biāo)簽芯片和天線構(gòu)成[2],標(biāo)簽芯片由模擬前端、EEPROM和數(shù)字基帶部分三部分組成。模擬前端電路除了具有收發(fā)RF信號(hào)功能外,還負(fù)責(zé)給整個(gè)芯片提供電源、時(shí)鐘和復(fù)位信號(hào);EEPROM用于存儲(chǔ)標(biāo)簽的唯一識(shí)別代碼和用戶數(shù)據(jù)信息;數(shù)字基帶部分負(fù)責(zé)完成通信協(xié)議的處理、 抗沖突控制、安全認(rèn)證、CRC校驗(yàn)和收發(fā)控制等工作, 占整個(gè)標(biāo)簽芯片的成本和功耗的主要部分[3]。
    由于RFID標(biāo)簽芯片及其控制器要求具有低成本、低功耗的特性[4],因此本文提出一種符合ISO18000-6B協(xié)議,并滿足低成本、低功耗要求的高頻RFID標(biāo)簽芯片數(shù)字基帶處理器的設(shè)計(jì)。
1 數(shù)字系統(tǒng)結(jié)構(gòu)圖
    根據(jù)ISO18000-6B協(xié)議,從閱讀器到應(yīng)答器的數(shù)據(jù)傳送通過(guò)對(duì)載波的幅度調(diào)制(ASK)完成,數(shù)據(jù)編碼為通過(guò)生成脈沖創(chuàng)建的曼徹斯特碼編碼,速率為40 kb/s;標(biāo)簽返回給閱讀器的數(shù)據(jù)通過(guò)FM0編碼調(diào)制后發(fā)送至模擬前端, 經(jīng)由天線發(fā)送至閱讀器。
    所設(shè)計(jì)的數(shù)字系統(tǒng)結(jié)構(gòu)圖如圖1所示,主要完成以下功能:(1)對(duì)前向鏈路解調(diào)輸出信號(hào)進(jìn)行曼徹斯特碼解碼,給出解碼輸出時(shí)鐘,解析出再同步信號(hào);(2)對(duì)解碼出的數(shù)據(jù)進(jìn)行CRC 校驗(yàn), 確認(rèn)數(shù)據(jù)傳輸和標(biāo)簽解調(diào)的正確性,并且同時(shí)對(duì)解碼輸出數(shù)據(jù)進(jìn)行串并轉(zhuǎn)換,以及解析出正確的命令;(3)根據(jù)ISO18000-6B協(xié)議的全部功能要求對(duì)接收的指令進(jìn)行正確處理;(4)根據(jù)協(xié)議的要求對(duì)存儲(chǔ)器進(jìn)行正確讀寫(xiě)操作;(5)對(duì)處理完畢的數(shù)據(jù)進(jìn)行組織,生成CRC校驗(yàn)碼;(6)對(duì)回送數(shù)據(jù)進(jìn)行FMO編碼,回送給射頻模擬前端進(jìn)行調(diào)制。

    在設(shè)計(jì)中,有限狀態(tài)機(jī)的設(shè)計(jì)是數(shù)字部分設(shè)計(jì)的核心,其功能是協(xié)調(diào)模塊之間數(shù)據(jù)與信號(hào)交互、處理接收到的指令及其相應(yīng)的數(shù)據(jù)、轉(zhuǎn)換自身狀態(tài)、執(zhí)行對(duì)碰撞計(jì)數(shù)器和靜默計(jì)數(shù)器的操作、執(zhí)行對(duì)存儲(chǔ)器的讀寫(xiě)存儲(chǔ)操作、規(guī)定反向散射標(biāo)簽的64位UID以及MTP存儲(chǔ)器內(nèi)容,并和外圍模塊電路一起構(gòu)成防碰撞電路,實(shí)現(xiàn)防碰撞算法。
2 低功耗設(shè)計(jì)
    電路中耗散的能量可以分為靜態(tài)功耗和動(dòng)態(tài)功耗。形成靜態(tài)功耗的主要原因是晶體管中從源極到漏極的亞閾值泄漏,就是指閾值電壓的降低阻止了柵的關(guān)閉。動(dòng)態(tài)功耗分為開(kāi)關(guān)功耗和內(nèi)部功耗。開(kāi)關(guān)功耗是由于器件輸出端的負(fù)載電容的充放電引起的。負(fù)載電容包括了門(mén)和線的電容。內(nèi)部功耗指在器件內(nèi)部耗散的能量,主要由瞬時(shí)短路所引起。
    數(shù)字部分實(shí)現(xiàn)低功耗,可以從系統(tǒng)級(jí)和RTL代碼級(jí)兩方面考慮。本設(shè)計(jì)中采取降低功耗的有效措施包括:降低電源電壓,降低時(shí)鐘頻率,門(mén)控時(shí)鐘技術(shù),組織模塊的設(shè)計(jì)方法。
2.1 同步化不同時(shí)鐘的設(shè)計(jì)方案
    當(dāng)系統(tǒng)中有兩個(gè)或兩個(gè)以上不同時(shí)鐘時(shí),數(shù)據(jù)的建立和保持時(shí)間很難得到保證,會(huì)面臨復(fù)雜的時(shí)間問(wèn)題。最好的方法是將不同的時(shí)鐘同步化,由于標(biāo)簽數(shù)字基帶電路中的編碼器設(shè)計(jì)中需要編碼輸入時(shí)鐘160 kHz和編碼輸出時(shí)鐘320 kHz,所以不同的觸發(fā)器使用不同的時(shí)鐘。為了系統(tǒng)穩(wěn)定,用系統(tǒng)時(shí)鐘1.28 MHz將160 kHz和320 kHz時(shí)鐘同步化,如圖2所示。1.28 MHz的高頻時(shí)鐘將作為系統(tǒng)時(shí)鐘,輸入到所有觸發(fā)器的時(shí)鐘端。160 MHz _EN和320 MHz_EN將控制所有觸發(fā)器的使能端。即原來(lái)接160 MHz時(shí)鐘的觸發(fā)器,接1.28 MHz時(shí)鐘,同時(shí)160 MHz_EN將控制該觸發(fā)器使能 ,原接320 MHz時(shí)鐘的觸發(fā)器,也接1.28 MHz時(shí)鐘,同時(shí)320 MHz_EN將控制該觸發(fā)器使能。這樣就可以滿足編碼器的時(shí)鐘同步要求。

    圖2為同步化不同時(shí)鐘的電路設(shè)計(jì)方案。
2.2 降低電源電壓
    動(dòng)態(tài)功耗和電源電壓的平方成正比,故降低電源電壓是減少功耗的有效辦法,但是降低供電電壓,會(huì)帶來(lái)很多副作用:首先,降低供電電壓,會(huì)導(dǎo)致速度下降,減小電容充放電的電流或負(fù)載驅(qū)動(dòng)電流;其次,會(huì)導(dǎo)致較低的輸出功率或較低的信號(hào)幅度,從而產(chǎn)生噪聲和信號(hào)衰減的問(wèn)題。研究表明:降低閥值電壓,可以使得動(dòng)態(tài)功耗減少,但會(huì)增大靜態(tài)功耗??紤]到數(shù)字控制部分和存儲(chǔ)器的功能,Vdd=1 V是達(dá)到較小的動(dòng)態(tài)和靜態(tài)功耗的一個(gè)很好的折中電壓。
    設(shè)計(jì)中采用的是臺(tái)積電提供的0.18 μm數(shù)字標(biāo)準(zhǔn)單元,標(biāo)準(zhǔn)工作電壓為0.9 V~1.1 V。而EEPROM工作電壓為0.9 V~1.2 V@讀數(shù)據(jù)/1.8 V@寫(xiě)數(shù)據(jù),所以進(jìn)行寫(xiě)操作時(shí)需要用到電平轉(zhuǎn)換將1.0 V轉(zhuǎn)換到1.8 V的電壓,以便進(jìn)行數(shù)據(jù)的交互。
2.3 門(mén)控時(shí)鐘的設(shè)計(jì)
    為了降低芯片的功耗,設(shè)計(jì)中使用了門(mén)控時(shí)鐘:用使能信號(hào)控制寄存器的時(shí)鐘端,當(dāng)使能信號(hào)有效時(shí)時(shí)鐘翻轉(zhuǎn),否則時(shí)鐘保持在固定電平。因此時(shí)鐘使能可以將電路中的部分電路處于空閑狀態(tài),阻止寄存器內(nèi)部翻轉(zhuǎn)和寄存器之間組合邏輯開(kāi)關(guān)動(dòng)作,以達(dá)到節(jié)省功耗的目的。圖3所示為門(mén)控時(shí)鐘的設(shè)計(jì)方案。

    表1給出利用綜合工具Design Compiler對(duì)當(dāng)前設(shè)計(jì)進(jìn)行綜合后的功耗和面積報(bào)告。可以看出,本設(shè)計(jì)使用門(mén)控時(shí)鐘后,總的動(dòng)態(tài)功耗降低了很多,并且在降低功耗的同時(shí),面積也有了一定的減小。


2.4 組織模塊設(shè)計(jì)方法
    由于在設(shè)計(jì)中并不是所有的模塊都同時(shí)工作,而是在某一個(gè)狀態(tài)下,只開(kāi)啟一個(gè)或幾個(gè)模塊,其他模塊處于關(guān)閉狀態(tài),所以如果有效組織模塊的開(kāi)關(guān),將會(huì)減少寄存器的開(kāi)關(guān)翻轉(zhuǎn)動(dòng)作。設(shè)計(jì)中利用有限狀態(tài)機(jī)根據(jù)不同的指令和狀態(tài)轉(zhuǎn)換開(kāi)啟不同的模塊來(lái)完成數(shù)據(jù)的處理要求和存儲(chǔ)操作:當(dāng)接收前向數(shù)據(jù)時(shí),開(kāi)啟編碼器、CRC計(jì)算/校驗(yàn)、和串并轉(zhuǎn)換;當(dāng)處理數(shù)據(jù)時(shí),開(kāi)啟模塊有限狀態(tài)控制機(jī)、EEPROM控制模塊、靜默計(jì)數(shù)器、隨機(jī)數(shù)產(chǎn)生器;當(dāng)返回?cái)?shù)據(jù)時(shí),開(kāi)啟模塊有限狀態(tài)控制機(jī)、EEPROM控制模塊、數(shù)據(jù)輸出控制端、編碼器其他模塊關(guān)閉。由于每個(gè)模塊在某個(gè)狀態(tài)下才開(kāi)啟,其他狀態(tài)下關(guān)閉,故減少了不必要的開(kāi)關(guān)動(dòng)作,從而有效降低了功耗。
3 芯片測(cè)試
    首先采用FPGA完成芯片的功能驗(yàn)證,以FPGA的可編程邏輯陣列為基本單元,實(shí)現(xiàn)ISO18000-6B的數(shù)字基帶功能的硬件仿真驗(yàn)證。然后使用ASIC芯片設(shè)計(jì)EDA工具將RTL頂層描述映射為基于TSMC提供的目標(biāo)工藝庫(kù)的基本數(shù)字單元的物理電路,并生成CAD版圖且提交給TSMC半導(dǎo)體工廠制作出來(lái)。
    進(jìn)行芯片測(cè)試時(shí),利用先施閱讀器產(chǎn)生RFID各種命令信號(hào),經(jīng)解調(diào)后輸入到待測(cè)試芯片的數(shù)據(jù)輸入端。芯片在電源、時(shí)鐘源信號(hào)、復(fù)位信號(hào)的共同激勵(lì)下進(jìn)入正常工作狀態(tài)并對(duì)輸入命令數(shù)據(jù)進(jìn)行響應(yīng),將數(shù)據(jù)輸出到調(diào)制電路,然后反射回閱讀器。閱讀器根據(jù)接收到的信號(hào)決定下一步操作。在閱讀器和待測(cè)芯片的交互過(guò)程中,可用邏輯分析儀觀察中間過(guò)程。圖4為先施閱讀器對(duì)測(cè)試芯片發(fā)送read命令時(shí),用邏輯分析儀捕捉的內(nèi)部信號(hào),其中信號(hào)data_in為解調(diào)器解調(diào)出的前向鏈路數(shù)據(jù),信號(hào)data_out為芯片的返回?cái)?shù)據(jù)。

    從已流片芯片的測(cè)試結(jié)果看,標(biāo)簽芯片數(shù)字系統(tǒng)的設(shè)計(jì)很好地完成了符合ISO18000-6B協(xié)議的所有強(qiáng)制命令以及讀寫(xiě)操作和鎖存、查詢鎖存等基本功能,且在閱讀器存盤(pán)操作下的平均速率為45~60張/s,功耗為3.10μW,很好地完成了低功耗無(wú)源電子標(biāo)簽的設(shè)計(jì)。
參考文獻(xiàn)
[1] FINKENZELLER K.RFID Handbook:fundamentals and  applications in contactless smart cards and identification. 2nd Ed,Wiley,2003.
[2] KARTHAUS U,F(xiàn)ISCHER M.Fully integrated passive UHF  RFID transponder IC with 1617 L W mini mum RF input power[J].IEEE Journal of Solid-state Circuits,2003,38(10):1602-1608.
[3] GLIDDEN R.Design of ult ra-low-cost UHF RFID tags for supply chain applications[J].IEEE Communication Magazine,2004,42(8):140-151.
[4] RICCI A,GRISANTI M,De Munari I,et al.Design of a  low-power digital core for passive UHF RFID transponder  [C].In:DSD(Digital System Design):Architectures,Methods and Tools 2006,9th Euromicro Conference,2006:561-568.
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。