《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 可編程邏輯 > 設(shè)計(jì)應(yīng)用 > 基于改進(jìn)UNet的瀝青道路缺陷檢測(cè)系統(tǒng)的研究與實(shí)現(xiàn)
基于改進(jìn)UNet的瀝青道路缺陷檢測(cè)系統(tǒng)的研究與實(shí)現(xiàn)
電子技術(shù)應(yīng)用
韓德強(qiáng),張洪瑞,楊淇善
北京工業(yè)大學(xué) 計(jì)算機(jī)學(xué)院
摘要: 針對(duì)道路缺陷檢測(cè)中傳統(tǒng)方法泛化能力低、易受環(huán)境干擾,以及深度學(xué)習(xí)模型部署在計(jì)算平臺(tái)時(shí)存在的高功耗、低速度等問(wèn)題,提出一種基于低功耗FPGA平臺(tái)的語(yǔ)義分割模型的加速與部署策略。首先,構(gòu)建包含道路裂縫與坑洞的多源數(shù)據(jù)集,通過(guò)數(shù)據(jù)增強(qiáng)技術(shù)平衡樣本分布;其次,針對(duì)UNet模型的特征提取網(wǎng)絡(luò)與上采樣網(wǎng)絡(luò)分別進(jìn)行通道裁剪,并結(jié)合量化技術(shù)將模型權(quán)重從FP32壓縮至INT8,進(jìn)一步降低計(jì)算量;最后,利用Vitis AI工具鏈完成模型量化與編譯,部署至FPGA平臺(tái),充分發(fā)揮其并行計(jì)算能力。實(shí)驗(yàn)結(jié)果表明,優(yōu)化后的模型在保證平均交并比(MIoU)損失小于5%的前提下,推理速度達(dá)到了17 ms,模型參數(shù)量與計(jì)算量大幅度降低,并且功耗顯著降低。該方法在邊緣端實(shí)現(xiàn)了高效、低功耗的道路缺陷檢測(cè),為瀝青道路自動(dòng)化養(yǎng)護(hù)評(píng)估提供了可行方案。
中圖分類號(hào):TP183 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256454
中文引用格式: 韓德強(qiáng),張洪瑞,楊淇善. 基于改進(jìn)UNet的瀝青道路缺陷檢測(cè)系統(tǒng)的研究與實(shí)現(xiàn)[J]. 電子技術(shù)應(yīng)用,2025,51(11):1-9.
英文引用格式: Han Deqiang,Zhang Hongrui,Yang Qishan. Research and implementation of an asphalt road defect detection system based on improved UNet[J]. Application of Electronic Technique,2025,51(11):1-9.
Research and implementation of an asphalt road defect detection system based on improved UNet
Han Deqiang,Zhang Hongrui,Yang Qishan
School of Computer Science,Beijing University of Technology
Abstract: Aiming at the problems such as the low generalization ability of traditional methods in road defect detection, which are vulnerable to environmental interference, and the high power consumption and low speed when deploying deep learning models on computing platforms, an acceleration and deployment strategy for the semantic segmentation model based on a low-power FPGA (Field-Programmable Gate Array) platform is proposed. Firstly, a multi-source dataset containing road cracks and potholes is constructed, and data augmentation techniques are used to balance the sample distribution. Secondly, channel pruning is carried out separately for the feature extraction network and the upsampling network of the UNet model. Combined with the quantization technique, the model weights are compressed from FP32 (32-bit floating-point) to INT8 (8-bit integer), further reducing the computational load. Finally, the Vitis AI toolchain is utilized to complete the model quantization and compilation, and the model is deployed to the FPGA platform to fully exert its parallel computing capability. The experimental results show that, on the premise of ensuring that the loss of the mean intersection over union (MIoU) is less than 5%, the inference speed of the optimized model reaches 17 ms. The number of model parameters and the computational load are significantly reduced, and the power consumption is remarkably decreased. This method achieves efficient and low-power road defect detection at the edge side, providing a feasible solution for the automated maintenance evaluation of asphalt roads.
Key words : road defect detection;semantic segmentation;model compression;FPGA model deployment

引言

隨著國(guó)家高速公路建設(shè)的快速發(fā)展,我國(guó)的道路總里程在不斷地增加,同時(shí)也帶來(lái)了養(yǎng)護(hù)成本不斷提高的問(wèn)題。據(jù)交通運(yùn)輸部門(mén)的官方數(shù)據(jù)統(tǒng)計(jì),2022年我國(guó)公路養(yǎng)護(hù)總里程增長(zhǎng)至535.01萬(wàn)公里,相比于2015年的446.56萬(wàn)公里增長(zhǎng)迅速,其占公路總里程也由2015年的97.60%增長(zhǎng)至2022年的99.90%[1]。目前,中國(guó)公路網(wǎng)絡(luò)已基本形成,主要道路也由水泥路變?yōu)榱藶r青道路,然而大規(guī)模建設(shè)后必然帶來(lái)繁重的養(yǎng)護(hù)任務(wù),隨著國(guó)家對(duì)公路養(yǎng)護(hù)體制改革的逐步深入,我國(guó)公路養(yǎng)護(hù)已由傳統(tǒng)的“搶修時(shí)代”過(guò)渡到“全面養(yǎng)護(hù)時(shí)代”[2]。根據(jù)交通運(yùn)輸部規(guī)劃戰(zhàn)略介紹,“十三五”期間我國(guó)公路建設(shè)需求將逐步下降,對(duì)道路養(yǎng)護(hù)的需求將大大的提高[3]。

公路是人們?nèi)粘I钪薪?jīng)常要使用到的基礎(chǔ)設(shè)施,使用量大必然面臨著損壞的問(wèn)題。公路損壞的原因是多方面的,從自然因素到貨車超載、出現(xiàn)小問(wèn)題時(shí)維護(hù)不及時(shí)等都加速了公路的損壞[4]。公路路面由于各種原因形成的裂縫、坑槽、塌陷等病害都嚴(yán)重影響著道路的安全[5]。然而,傳統(tǒng)的道路質(zhì)量評(píng)估通常是由人工進(jìn)行檢測(cè),這種方法穩(wěn)定性差、速度慢,還存在漏檢與誤檢的問(wèn)題,尤其在人工檢測(cè)的過(guò)程中普遍還需要對(duì)道路進(jìn)行封閉,這可能會(huì)造成道路的擁堵,影響交通秩序[6]。所以,如何對(duì)道路上的病害與缺陷進(jìn)行自動(dòng)化的檢測(cè)成為當(dāng)前重要的研究課題。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000006833


作者信息:

韓德強(qiáng),張洪瑞,楊淇善

(北京工業(yè)大學(xué) 計(jì)算機(jī)學(xué)院,北京 100124)


subscribe.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。