單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

2017-03-23 11:39

  1 引言
  
  近年來,高頻熒光燈電子鎮(zhèn)流器以其高效、體積小、重量輕、無頻閃、燈壽命長等優(yōu)點而逐漸為人們所接受。
  
  我國對電子鎮(zhèn)流器的研究和發(fā)展是在上世紀80年代末到90年代初。在初期,很多廠家為了節(jié)約成本,選用的拓撲結構較簡單,性能指標往往無法達到國家標準,而且極易損壞,這無疑給電子鎮(zhèn)流器的普及造成了更多障礙。目前,一些人直接套用國外先進的電路拓撲,致使設計方法紛繁復雜,甚至有些根本不適于在220V/50Hz電網(wǎng)下工作。隨著節(jié)能問題越來越受到關注,高性能的熒光燈電子鎮(zhèn)流器需要增加調光功能,在不必要滿功率輸出的場合,降低輸出功率,不僅節(jié)能,延長燈的使用壽命,而且還能起到變換視覺效果的目的。因此,研究出高性能、更貼近燈特性、且功能齊全的電子鎮(zhèn)流器迫在眉睫。
  
  2 設計要點
  
  2.1 概述
  
  調光功能實際上是指具有調節(jié)燈上的輸出功率的功能。當照明裝置并不需要滿功率輸出時,研究表明,應用調光系統(tǒng)可節(jié)能50%。
  
  在傳統(tǒng)的無調光系統(tǒng)鎮(zhèn)流器設計中,由于燈在高頻下且穩(wěn)定工作時,輸出功率也恒定,可以近似認為燈是定常電阻。當電網(wǎng)電壓波動,或由于其它原因使燈電流、燈電壓發(fā)生變化,即燈電壓、燈電流RMS值及燈功率發(fā)生改變時,只要通過閉環(huán)控制就可以使燈穩(wěn)定地工作在額定點附近,燈電阻就不會發(fā)生很大的變化。然而,在調光工作模式下設計變得復雜了,如果仍然把燈等效成純阻性負載,會產(chǎn)生相當大的偏差,因為在不同的調光等級,熒光燈所表現(xiàn)出的負阻特性是不同的。因此設計調光式電子鎮(zhèn)流器不能用簡單的電阻負載來等效燈。
  
  近年來,由于采用計算機輔助設計使電力電子裝置設計過程大大簡化,并且可以得到更多的電路工作信息。常用的仿真軟件有PSPICE、MATLAB等等,而在電力電子裝置的設計中以使用PSPICE居多。因此,建立熒光燈的PSPICE模型成為迫切需要解決的問題。
  
  2.2 熒光燈的建模
  
  熒光燈的建模主要有兩種方法,一種是物理建模,它是基于燈的物理放電現(xiàn)象,然而這種建模方法都要涉及較復雜的方程式和很多變量,不適合電路仿真;另一種是采用曲線擬和的方法,它是利用燈的V-I特性曲線建模,根據(jù)實驗結果用含有待定系數(shù)的曲線方程去近似,其中,有的用立方曲線方程,還有用指數(shù)曲線方程、拋物線曲線方程、甚至用線性方程去擬和。
  
  PSPICE模型可以是靜態(tài)模型也可以是動態(tài)模型。靜態(tài)模型需計算出在不同工作點時燈所表現(xiàn)的阻抗值,再進行分布仿真,通常這類模型建立起來比較簡單,但應用十分不便。動態(tài)模型需要在工作點變化時,把此時燈所呈現(xiàn)出來的阻抗值直接反映出來,包括它的啟動過程,這樣的模型通常稱之為調光模型,這種模型非常適用于調光式電子鎮(zhèn)流器的設計。圖1是一個熒光燈PSPICE動態(tài)模型[1]。它是基于指數(shù)曲線擬和而成的,此模型是針對32W-T8燈建立的。

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

圖1 熒光燈PSPICE模型

  2.3 調光方式
  
  調光是指調節(jié)傳遞到燈上的能量,從而改變燈功率。一個調光控制系統(tǒng)中一般通過控制四個參量達到調光目的,即
  
  1)調頻
  
  2)調節(jié)占空比
  
  3)調節(jié)直流母線電壓
  
  4)調節(jié)諧振阻抗值[2]。
  
  頻率控制指的是改變開關頻率fs,使工作頻率遠離諧振網(wǎng)絡的自然諧振頻率而減少燈功率,此時保持占空比D恒定不變。占空比調制是指在fs恒定的情況下,改變開關的導通時間,導通時間的減少使傳遞到燈上的能量減少從而使燈上的功率減少。占空比調制范圍是從0變化到0.5,因此,限制了調光范圍。調節(jié)直流母線電壓指的是改變直流母線電壓的幅值,同時保持fs和D不變,這種控制方式只能用于雙級拓撲結構中。阻抗控制是指改變諧振網(wǎng)絡的Ls、Cr的參數(shù)值,這種控制方式實現(xiàn)起來較復雜。其中,采用調頻方式的電路結構較簡單,且容易控制,因此,實際應用最多。但它卻有著在整個調光范圍內,不易實現(xiàn)軟開關;在輕載時,器件應力很大;且硬開通和硬關斷使電磁騷擾問題嚴重等缺點。為了擴大調光范圍,則需擴大頻率變化范圍,而頻率范圍又受電磁元件、門極驅動電路所限制,燈電流近似與逆變器頻率成反比,因此設計電感等電磁元件時要考慮這方面的影響。
  
  2.4 模型的驗證
  
  圖2使用一個簡單電路驗證一下燈模型,拓撲僅由一個CLASS-D逆變器構成。參數(shù)為Ls=1.56mH,Cr=5.6nF,fs=45kHz,D=0.45。

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

圖2 CLASS?D型逆變器電路拓撲

  從圖3中可以明顯地看出,在整個調光范圍內燈電壓幾乎不變,燈電流隨著頻率的增加而逐漸降低。當fs接近75kHz時,燈電流急劇下降,繼續(xù)增大頻率,燈將會熄滅。由此說明此模型能夠很好地反映燈特性。

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

(a) f=45kHz,D=0.45

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

(b) f=70kHz,D=0.45

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

(c) f=75kHz,D=0.45

圖3 不同頻率下燈電壓、燈電流仿真波形

  3 設計與驗證
  
  3.1 主電路拓撲
  
  主電路拓撲結構如圖4所示。
  
  電子鎮(zhèn)流器的主電路由PFC電路和諧振電路兩部分組成??紤]到兩級結構的成本過高,因此將兩級中的功率開關管共用變成單級結構。圖4所示主電路拓撲就是將Buck-Boost型PFC電路與并聯(lián)負載串聯(lián)諧振電路合成在一起,燈模型采用前面所提到的模型。

單級高功率因數(shù)調光式熒光燈電子鎮(zhèn)流器設計

圖4 調光式熒光燈電子鎮(zhèn)流器主電路拓撲