[摘要]:本文從控制原理,電路拓撲,技術特點,實驗分析等方面簡明扼要地闡述了直驅式
風力發(fā)電并網變流器。此變流器網側功率因數高,電流總諧波(THD)小,動態(tài)響應快,呈
電流源特性,易于多單元并聯(lián)。
[關鍵詞]:風力發(fā)電 直驅式變流器 電流總諧波
Abstract:The paper briefly introduces the inverter device for direct-drive wind power generation system in the aspect of controlled-theory , circuit structure , technical features , experiment analyzing etc. The inverter also has higher power factor in line side , lower THD , quickly dynamic response . It presents the character of current-source, and it is easy to be paralleled.
Key words:Wind power generation direct – drive inverter THD
0 引言
風力發(fā)電是目前最具有形成規(guī)?;妥罹邆渖虡I(yè)化的可再生能源技術。而實際上風力發(fā)電在很大程度上取決于變速恒頻發(fā)電系統(tǒng)的發(fā)展,變速恒頻發(fā)電系統(tǒng)已經成為兆瓦級以上風力發(fā)電機組的主流技術。所謂變速恒頻,就是通過調速控制,使風力發(fā)電機組風輪轉速能夠跟隨風速的變化,最大限度地提高風能的利用效率,有效降低載荷,同時風輪及其所驅動的電機轉速變化時,保證輸出的電能頻率始終與電網頻率一致。
變速恒頻風力發(fā)電系統(tǒng)主要分為雙饋式和直驅式兩種類型。雙饋式由于其變流器串聯(lián)在雙饋發(fā)電機的轉子繞組中,其容量只有系統(tǒng)總功率的1/3—1/4,有效地降低了系統(tǒng)成本;與雙饋式相比,直驅式采用低速永磁同步發(fā)電機結構,無須齒輪箱(或半直驅式,采用一級齒輪箱),也無滑輪,機械故障少,損耗小,運行效率高,維護成本低,但是,由于直驅式采用系統(tǒng)全功率傳輸,初始成本相對高?! ∧壳皣鴥仍S多高校,研究所和企業(yè)主要研究、跟蹤,消化吸收雙饋式并網變流器,而我們公司近年來利用多年研究開發(fā)大功率變頻器主電路拓撲和回饋并網控制技術的優(yōu)勢,專注直驅式風力發(fā)電并網控制技術的開發(fā),成功研制出產品,并安裝調試于內蒙古包頭市自治區(qū)項目中,現(xiàn)已成功運行數月,且無故障記錄
1控制原理
兆瓦級大功率直驅式并網變流器采用多單元并聯(lián)結構,單個單元的主電路拓撲采用交—直—交電壓型結構,如圖1或圖2所示,圖1采用二極管不控整流和Boost升壓穩(wěn)壓電路,圖2采用PWM全控整流電路。
圖1 帶有Boost升壓穩(wěn)壓電路拓撲
采用圖1主電路拓撲,通過Boost升壓穩(wěn)壓環(huán)節(jié)將很好的控制后端逆變器的輸入直流電壓,即不管二極管不控整流的輸出直流電壓變化多大,通過Boost升壓穩(wěn)壓電路后,其直流電壓基本穩(wěn)定,使后端逆變器調制度范圍好,提高運行效率,減小損耗,同時,Boost電路還可以對永磁同步發(fā)電機輸出側進行功率因數校正。
圖2 PWM整流電路拓補
采用圖2主電路拓撲,通過PWM可控整流技術,可以很好的處理發(fā)電機端的交流電壓不穩(wěn),諧波較大和直流側電壓變化大的問題,是最具發(fā)展前途的主電路結構方式。兩種主電路各有各的優(yōu)缺點??刂粕喜捎秒娏鲀拳h(huán),電壓外環(huán)雙閉環(huán)矢量控制技術。各個單元采用載波移相多重化技術,無需額外增加濾波器,便能使網側電流總諧波THD小于國標5%的要求。
2 技術特點
利用多年的研制低壓大功率變頻器的主電路拓撲和能量回饋并網技術,成功研制出直驅式風力發(fā)電并網變流器,并已成功用于風力發(fā)電項目中,該產品有如下技術特點:
(一)控制上采用電壓電流雙閉環(huán)矢量控制,呈現(xiàn)電流源特性,電流環(huán)是直驅式風力發(fā)電并網變流器控制的核心。
(二)變流器對電網呈現(xiàn)電流源特性,容易做多單元并聯(lián),易于大功率化組裝,各個單元之間采用多重化載波移相,極大的減小了網側電流總諧波。
(三)網側逆變器采用三電平電路拓撲,適應網側電壓范圍廣,同時也有益于減小網側電流總諧波。
(四)兆瓦級變流器需多個單元并聯(lián)組合,系統(tǒng)控制會自動分組工作,很容易線性化并網回饋功率,易于整個風電項目系統(tǒng)控制,同時有益于減小電流總諧波
(五)并網變流器采用先進的PWM控制技術,可以靈活調節(jié)系統(tǒng)的有功和無功功率,減小開關損耗,提高效率,自動并網功率最大化。
(六)具有動態(tài)響應快,根據風電整體控制,可以瞬時滿足大范圍功率變化要求,適應性強。
(七)具有溫度,過流,短路,旁路,網側電壓異常等各種保護功能,具有多種模擬量和數字量接口,具有CAN總線或RS485串行總線等接口,與風電項目中的其它部分連接方便,控制靈活。
3 實驗波形分析
圖3,圖4分別是網側電壓電流波形圖,圖3是并網電流為60A時的網側電壓電流波形圖;圖4是并網電流為100A時的網側電壓電流波形圖,從兩圖可以看出,網側電流正弦化,且與電網電壓反相,呈現(xiàn)負的單位功率因數,同時也能觀察到隨著電流的增大,網側電流的總諧波(THD)越來越小,即整體效率也越來越大。
圖3 電流60A時波形圖
圖4 電流100A時波形圖
4 小結
直驅式風力發(fā)電并網變流器采用交—直—交三電平電壓型主電路拓撲,呈控制電流源特性,容易并聯(lián),易于大功率化組裝,網側電流正弦化,可以軟并網,對電網無沖擊,無污染,可以廣泛用于風力發(fā)電等可再生能源項目中。
作者介紹:胡順全,畢業(yè)于山東大學控制科學與工程學院電力電子與電力傳動專業(yè),現(xiàn)就職于山東新風光電子科技發(fā)展有限公司研發(fā)部工作,從事變頻器、可再生能源回饋裝置等電力電子變換技術的研發(fā)工作。
參考文獻:
(1) 楊國良,基于電力電子技術的風力發(fā)電技術研究現(xiàn)狀。變頻技術應用,2007,2:63-67
(2)Yang zhenkun, liang hui .A DSP control system for the grid-connected inverter in wind enery conversion system . IEEE 2005:1050-1053
(3)馬小亮,變速風力發(fā)電機組動力驅動系統(tǒng)方案比較。 變頻器世界 2007,4:42-48
(4)Robert hennchen comparison between double feed asynchronues generator and synchronues generator for use in wind turbines[z],2005