《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 設(shè)計(jì)應(yīng)用 > 面向機(jī)器學(xué)習(xí)建模的數(shù)據(jù)治理技術(shù)路徑研究
面向機(jī)器學(xué)習(xí)建模的數(shù)據(jù)治理技術(shù)路徑研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
李彥澤1,郭超2,孫旭明2,母東杰2
1.北京百分點(diǎn)科技集團(tuán)股份有限公司; 2.中國(guó)電子產(chǎn)業(yè)工程有限公司
摘要: 隨著人工智能和機(jī)器學(xué)習(xí)技術(shù)的快速發(fā)展,數(shù)據(jù)質(zhì)量已成為提升模型性能和可靠性的核心因素。特別是在不同類型機(jī)器學(xué)習(xí)模型的應(yīng)用中,如何有效地實(shí)施數(shù)據(jù)治理以提升數(shù)據(jù)質(zhì)量、穩(wěn)定性和公平性,仍然是一個(gè)亟待解決的問(wèn)題。綜述了數(shù)據(jù)治理在機(jī)器學(xué)習(xí)建模中的關(guān)鍵作用,提出了一套系統(tǒng)性的數(shù)據(jù)治理框架,涵蓋數(shù)據(jù)采集、處理、標(biāo)注、模型訓(xùn)練等全過(guò)程,旨在提供切實(shí)可行的治理方案以支撐機(jī)器學(xué)習(xí)應(yīng)用。該框架強(qiáng)調(diào)在不同階段采用針對(duì)性的技術(shù)措施,確保數(shù)據(jù)治理的有效性,從而促進(jìn)數(shù)據(jù)質(zhì)量的提升和模型的可解釋性、穩(wěn)定性及公平性的保障。本研究為數(shù)據(jù)治理在機(jī)器學(xué)習(xí)中的深入應(yīng)用提供了理論基礎(chǔ),并為后續(xù)的技術(shù)實(shí)踐和創(chuàng)新提供了指導(dǎo)。
中圖分類號(hào):TP18.4文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2025.03.011
引用格式:李彥澤,郭超,孫旭明,等. 面向機(jī)器學(xué)習(xí)建模的數(shù)據(jù)治理技術(shù)路徑研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2025,44(3):63-70.
Data governance technical process for machine learning modeling
Li Yanze1, Guo Chao2, Sun Xuming2, Mu Dongjie2
1. Beijing PERCENT Technology Group Co., Ltd.; 2. China Electronics Industry Engineering Co., Ltd.
Abstract: With the rapid development of artificial intelligence and machine learning technologies, ensuring data quality has become a core factor in enhancing model performance and reliability. Particularly in the application of different types of machine learning models, how to effectively implement data governance to improve data quality, stability, and fairness remains an urgent issue to be addressed. This paper reviews the critical role of data governance in machine learning modeling and proposes a systematic data governance framework, covering the entire process from data collection, processing, and annotation to model training. The framework aims to provide practical governance solutions to support machine learning applications. It emphasizes the adoption of targeted technical measures at different stages to ensure the effectiveness of data governance, thereby enhancing data quality and ensuring model interpretability, stability, and fairness. This research provides a theoretical foundation for the in-depth application of data governance in machine learning and offers guidance for subsequent technical practices and innovations.
Key words : data governance; machine learning; artificial intelligence; architecture; data management; model training

引言

當(dāng)前,人工智能(AI)和機(jī)器學(xué)習(xí)(ML)已廣泛應(yīng)用于語(yǔ)音技術(shù)、醫(yī)療研發(fā)、自動(dòng)駕駛等多個(gè)日常生活領(lǐng)域。AI的核心構(gòu)成是算法、數(shù)據(jù)和基礎(chǔ)設(shè)施三者的有機(jī)結(jié)合[1]。單純依靠算法優(yōu)化和硬件性能提升不足以推動(dòng)AI的發(fā)展,更需高質(zhì)量數(shù)據(jù)集的支撐。關(guān)于如何優(yōu)化數(shù)據(jù)處理和治理過(guò)程,大部分研究集中于標(biāo)注質(zhì)量的提升、數(shù)據(jù)集的構(gòu)建及優(yōu)化、模型評(píng)估等方面,缺乏系統(tǒng)化的技術(shù)路徑和全面的解決方案。尤其是在面對(duì)不同類型的機(jī)器學(xué)習(xí)模型(如監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等)時(shí),如何提升數(shù)據(jù)質(zhì)量和模型的穩(wěn)定性、可解釋性以及公平性,仍然是一個(gè)亟待解決的問(wèn)題。

本文綜合現(xiàn)有研究成果,提出了一套系統(tǒng)性的數(shù)據(jù)治理框架,結(jié)合機(jī)器學(xué)習(xí)建模需求,從數(shù)據(jù)采集、處理、標(biāo)注到模型訓(xùn)練的全過(guò)程中提供可操作的治理方案,推動(dòng)數(shù)據(jù)治理在機(jī)器學(xué)習(xí)應(yīng)用中的深入實(shí)施。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000006380


作者信息:

李彥澤1,郭超2,孫旭明2,母東杰2

(1.北京百分點(diǎn)科技集團(tuán)股份有限公司,北京100096;

2.中國(guó)電子產(chǎn)業(yè)工程有限公司,北京100036)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。