《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 可編程邏輯 > 其他 > 教程:關(guān)于FPGA上HBM 425GB/s內(nèi)存帶寬的實(shí)測

教程:關(guān)于FPGA上HBM 425GB/s內(nèi)存帶寬的實(shí)測

2022-12-20
來源:github
關(guān)鍵詞: 存儲器 FPGA

  本文是第一篇詳細(xì)介紹HBM在FPGA上性能實(shí)測結(jié)果的頂會論文(FCCM2020,Shuhai: Benchmarking High Bandwidth Memory on FPGAs),作者是浙江大學(xué)王則可博士!感謝王則可博士允許本公眾號轉(zhuǎn)載該論文的中文譯文。論文給出了FPGA上HBM可提供高達(dá)425GB/s內(nèi)存帶寬的實(shí)測結(jié)果!結(jié)合前兩天,本公眾號轉(zhuǎn)發(fā)老石的文章,目前采用Chiplet技術(shù)的光口速率可以達(dá)到驚人的2Tbps。而本文介紹的同樣采用Chiplet技術(shù)的HBM,訪存帶寬高達(dá)425GB/s,那么采用這樣光口和緩存的網(wǎng)卡會是一種怎樣的高性能呢?對NIC或者Switch內(nèi)部的總線帶寬又有怎樣的要求呢?我們期待著能夠用2Tbps接口和HBM技術(shù)的NIC或者Switch的出現(xiàn)。

  作者:浙江大學(xué)博士生導(dǎo)師王則可博士。

  隨著高帶寬內(nèi)存(HBM)的發(fā)展,F(xiàn)PGA正變得越來越強(qiáng)大,HBM 給了FPGA 更多能力去緩解再一些應(yīng)用中遇到的內(nèi)存帶寬瓶頸和處理更多樣的應(yīng)用。然而,HBM 的性能表現(xiàn)我們了解地還不是特別精準(zhǔn),尤其是在 FPGA 平臺上。這篇文章我們將會在HBM 的說明書和它的實(shí)際表現(xiàn)之間建立起橋梁。我們使用的是一款非常棒的 FPGA,Xilinx ALveo U280,有一個(gè)兩層的HBM 子系統(tǒng)。在最后,我們提出了豎亥,一款讓我們測試出所有HBM 基礎(chǔ)性能的基準(zhǔn)測試工具?;贔PGA 的測試平臺相較于CPU/GPU 平臺來說會更位準(zhǔn)確,因?yàn)樵肼晻?,后者有著?fù)雜的控制邏輯和緩存層次。我們觀察到 1)HBM 提供高達(dá)425 GB/s 的內(nèi)存帶寬,2)如何使用HBM 會給性能表現(xiàn)帶來巨大的影響,這也印證了揭開 HBM 特性的重要性,這可以讓我們選擇最佳的使用方式。作為對照,我們同樣將豎亥應(yīng)用在DDR4上來展現(xiàn)DDR4 和HBM 的不同。豎亥可以被輕松部署在其他FPGA 板卡上,我們會將豎亥開源,造福社會。

  引言

  現(xiàn)代計(jì)算機(jī)系統(tǒng)的計(jì)算能力隨著 CMOS技術(shù)的發(fā)展持續(xù)提升,典型的例子就是應(yīng)用更多的核心在同樣的區(qū)域中或者增加額外的功能到核里面去(SIMD、AVX、SGX等)。與此相反,DRAM內(nèi)存的帶寬發(fā)展地十分緩慢。因此處理器和內(nèi)存之間的差距越來越大,并且隨著多核設(shè)計(jì)而變得更嚴(yán)重。HBM被提出用于提供高得多的帶寬能力。HBM2 能提供高達(dá)900 GB/s 的內(nèi)存帶寬。  與同一代GPU相比,F(xiàn)PGA 帶寬能力要低幾個(gè)數(shù)量級,傳統(tǒng)的FPGA有兩個(gè)DRAM內(nèi)存通道,每個(gè)提供19.2GB/s的內(nèi)存帶寬。因此FPGA不能完成很多對帶寬能力要求高的應(yīng)用。因此Xilinx將HBM引用到新一代FPGA中去。HBM有潛力成為改變目前局面的特性。 盡管有著潛力去解決處理器和內(nèi)存間的差距,應(yīng)用HBM到FPGA上還是有很多阻礙。HBM的特性不為人們所了解。

  盡管和DRAM有著相同的die,HBM的特性和前者完全不同。Xilinx的HBM子系統(tǒng)也引入了很多新特性例如switch。Switch的特性同樣不為我們所了解。這些東西都會阻礙開發(fā)者利用FPGA上的HBM。 在最后我們提出了豎亥,一個(gè)可以用來測試HBM特性的基準(zhǔn)測試工具。據(jù)我們所致,豎亥是第一個(gè)系統(tǒng)性測試FPGA上的HBM的測試平臺。我們通過以下四個(gè)方面來證明豎亥的用處。

  F1:HBM提供巨大的內(nèi)存帶寬:在我們的測試平臺上,HBM提供高達(dá)425 GB/s的內(nèi)存帶寬,比傳統(tǒng)使用兩個(gè)DDR4來說要高一個(gè)數(shù)量級。雖然只有GPU的一半,但是這對FPGA來說也是一個(gè)巨大的進(jìn)步。

  F2:地址映射策略很重要:不同的地址映射策略會帶來數(shù)量級的速度差異。這也意味著要根據(jù)應(yīng)用的不同選取不同的映射策略。

  F3:HBM延時(shí)要比DDR4高很多:HBM和FPGA的聯(lián)系是通過transceiver,帶來了額外的糾錯碼和串行并行轉(zhuǎn)換的開銷。豎亥測試出在頁命中情況下,HBM的延時(shí)是122.2ns,而DDR4僅為73.3ns。

38.JPG

  圖1:Xilinx HBM子系統(tǒng)架構(gòu)

  F4:FPGA可以更精準(zhǔn)地測量:我們將豎亥直接連接HBM模塊,使得更容易解釋測量結(jié)果,而使用CPU/GPU會引出更多的噪聲,例如緩存的影響。因此我們主張豎亥是一個(gè)更好的選項(xiàng)來測量內(nèi)存。

  背景

  HBM芯片采用了最新的IC封裝技術(shù),例如直通硅通孔(TSV),堆疊式DRAM和2.5D封裝[13],[18]。HBM的基本結(jié)構(gòu)由底部的基本邏輯芯片和頂部堆疊的4或8核心DRAM芯片組成。所有管芯均通過TSV互連。Xilinx在FPGA內(nèi)部集成了兩個(gè)HBM堆棧和一個(gè)HBM控制器。每個(gè)HBM堆棧都分為八個(gè)獨(dú)立的存儲通道,其中每個(gè)存儲通道又分為兩個(gè)64位偽通道。如圖1所示,只允許偽通道訪問與其關(guān)聯(lián)的HBM通道,該通道具有自己的內(nèi)存地址區(qū)域。Xilinx的HBM子系統(tǒng)具有16個(gè)存儲通道,32個(gè)偽通道和32個(gè)HBM通道。 在16個(gè)存儲通道的頂部,有32個(gè)與用戶邏輯交互的AXI通道。每個(gè)AXI通道均遵循標(biāo)準(zhǔn)AXI3協(xié)議[44],以向FPGA程序員提供經(jīng)過驗(yàn)證的標(biāo)準(zhǔn)化接口。每個(gè)AXI通道都與一個(gè)HBM通道(或偽通道)相關(guān)聯(lián),因此每個(gè)AXI通道僅被允許訪問其自己的內(nèi)存區(qū)域。為了使每個(gè)AXI通道都能訪問整個(gè)HBM空間,Xilinx引入了在32個(gè)AXI通道和32個(gè)偽通道之間的switch[41],[44]。但是,由于其巨大的資源消耗,該switch尚未完全實(shí)現(xiàn)。相反,Xilinx提供了八個(gè)小型switch,其中每個(gè)小型switch為四個(gè)AXI通道及其相關(guān)的偽通道提供服務(wù),并且在每個(gè)AXI通道都可以訪問同一小型switch中的任何偽通道,該小型switch被完全實(shí)現(xiàn)。具有相同的延遲和吞吐量。此外,兩個(gè)相鄰的微型switch之間有兩個(gè)雙向連接,用于全局尋址。

  豎亥的基本架構(gòu)

  在本節(jié)中,我們介紹設(shè)計(jì)方法,然后是豎亥的軟件和硬件組件。

  A.設(shè)計(jì)方法論

  在本小節(jié)中,我們總結(jié)了兩個(gè)具體挑戰(zhàn)C1和C2,然后介紹豎亥如何來應(yīng)對這兩個(gè)挑戰(zhàn)。

  C1:高層洞察力。在某種意義上,使我們的基準(zhǔn)測試框架對FPGA程序員有意義是至關(guān)重要的,因?yàn)槲覀儜?yīng)該輕松地向FPGA程序員提供更詳盡的解釋,而不是僅僅令人費(fèi)解的內(nèi)存時(shí)序參數(shù)(例如行預(yù)充電時(shí)間TRP),這可用于改善FPGA上HBM存儲器的使用。

  C2:易于使用。 在對FPGA進(jìn)行基準(zhǔn)測試時(shí),可能需要做一些小改動才能重新配置FPGA,很難實(shí)現(xiàn)易用性。因此,我們打算最大程度地減少重新配置的工作,以使在基準(zhǔn)測試任務(wù)之間無需重新配置FPGA。換句話說,我們的基準(zhǔn)測試框架應(yīng)該允許我們將一個(gè)FPGA實(shí)例用于大量的基準(zhǔn)測試任務(wù),而不僅僅是一個(gè)任務(wù)。

  我們的方法。我們使用豎亥應(yīng)對上述兩個(gè)挑戰(zhàn)。為了解決第一個(gè)挑戰(zhàn)C1,豎亥允許直接分析FPGA程序員使用的典型存儲器訪問模式的性能特征,并提供整體性能的詳盡說明。為了解決第二個(gè)挑戰(zhàn),即C2,豎亥使用基準(zhǔn)電路的運(yùn)行時(shí)參數(shù)化功能來覆蓋各種基準(zhǔn)測試任務(wù),而無需重新配置FPGA。通過基準(zhǔn)測試中實(shí)現(xiàn)的訪問模式,我們可以揭示FPGA上HBM和DDR4的基本特性。 豎亥采用基于兩個(gè)組件的軟件-硬件協(xié)同設(shè)計(jì)方法:軟件組件(III-B小節(jié))和硬件組件(III-C小節(jié))。軟件組件的主要作用是在運(yùn)行時(shí)參數(shù)方面為FPGA程序員提供靈活性。利用這些運(yùn)行時(shí)參數(shù),在對HBM和DDR4進(jìn)行基準(zhǔn)測試時(shí),我們無需頻繁地重新配置FPGA。硬件組件的主要作用是保證性能。更準(zhǔn)確地說,豎亥應(yīng)該能夠在FPGA上展現(xiàn)HBM存儲器在最大可實(shí)現(xiàn)的存儲器帶寬和最小可實(shí)現(xiàn)的延遲方面的性能潛力。為此,基準(zhǔn)測試電路本身不能在任何時(shí)候成為瓶頸。

  B.軟件組件 豎亥的軟件組件旨在提供用戶友好的接口,以便FPGA開發(fā)人員可以輕松地使用豎亥來對HBM存儲器進(jìn)行基準(zhǔn)測試并獲得相關(guān)的性能特征。為此,我們介紹了一種廣泛用于FPGA編程的存儲器訪問模式:重復(fù)順序遍歷(RST),如圖2所示。

37.JPG

  圖2:在豎亥中使用的內(nèi)存訪問模式

  RST模式遍歷一個(gè)存儲區(qū)域,一個(gè)數(shù)據(jù)陣列按順序存儲數(shù)據(jù)元素。RST重復(fù)掃描起始地址為A的大小為W的存儲區(qū)域,并且每次讀取步長為S字節(jié)的B個(gè)字節(jié),其中B和S為2的冪。在我們測試的FPGA上,訪問大小B應(yīng)為由于HBM / DDR4存儲器應(yīng)用程序數(shù)據(jù)寬度的限制,對于HBM(或DDR4),其值不得小于32(或64)。步幅S不應(yīng)大于工作集大小W。參數(shù)匯總在表I中。我們計(jì)算出RST發(fā)出的第i個(gè)存儲器讀/寫事務(wù)的地址T [i],如公式1所示??梢允褂煤唵蔚乃惴▉韺?shí)現(xiàn)計(jì)算,從而減少了FPGA資源的數(shù)量,并可能實(shí)現(xiàn)更高的頻率。盡管這公式非常簡單,但是它能幫助我們了解FPGA上的HBM和DDR。

  表格1:運(yùn)行時(shí)參數(shù)總結(jié)

36.JPG

  T[i] = A + (i × S)%W 公式(1)

  C.硬件組件 豎亥的硬件組件由一個(gè)PCIe模塊,M個(gè)延遲模塊,一個(gè)參數(shù)模塊和M個(gè)引擎模塊組成,如圖3所示。在下面,我們討論每個(gè)模塊的實(shí)現(xiàn)細(xì)節(jié)。

  1)引擎模塊:我們直接將實(shí)例化的引擎模塊連接到AXI通道,以便引擎模塊直接服務(wù)于AXI接口,例如AXI3和AXI4 [2],[42],它由基礎(chǔ)內(nèi)存IP核提供,HBM和DDR4。AXI接口包含五個(gè)不同的通道:讀取地址(RA),讀取數(shù)據(jù)(RD),寫入地址(WA),寫入數(shù)據(jù)(WD)和寫入響應(yīng)(WR)[42]。此外,引擎模塊的輸入時(shí)鐘正是來自相關(guān)AXI通道的時(shí)鐘。例如,在對HBM進(jìn)行基準(zhǔn)測試時(shí),引擎模塊的時(shí)鐘頻率為450MHz,因?yàn)槠銩XI通道最多允許450MHz。使用同一時(shí)鐘有兩個(gè)好處。首先,跨不同時(shí)鐘區(qū)域所需的FIFO不會引入額外的噪聲,例如更長的延遲。其次,引擎模塊能夠容納其關(guān)聯(lián)的AXI通道,不會導(dǎo)致內(nèi)存帶寬容量的低估。 用Verilog編寫的引擎模塊由兩個(gè)獨(dú)立的模塊組成:寫入模塊和讀取模塊。寫模塊為三個(gè)與寫相關(guān)的通道WA,WD和WR提供服務(wù),而讀模塊為兩個(gè)與讀相關(guān)的通道RA和RD提供服務(wù)。

  寫模塊。該模塊包含一個(gè)狀態(tài)機(jī),該狀態(tài)機(jī)可以從CPU執(zhí)行內(nèi)存寫入任務(wù)。該任務(wù)具有初始地址A,寫入數(shù)N,訪問大小B,步幅S和工作集大小W。公式1中指定了每個(gè)存儲器寫事務(wù)的地址。該模塊還探測WR通道,以驗(yàn)證動態(tài)存儲器寫的工作已成功完成。

  讀取模塊。讀取模塊包含一個(gè)狀態(tài)機(jī),該狀態(tài)機(jī)可以從CPU中執(zhí)行內(nèi)存讀取任務(wù)。該任務(wù)具有初始地址A,讀取事務(wù)數(shù)N,訪問大小B,幅度S和工作集大小W。與寫入模塊不同,寫入模塊僅測量可實(shí)現(xiàn)的吞吐量,讀取模塊還測量每個(gè)模塊的延遲。當(dāng)測試速度時(shí),該模塊會一直嘗試滿足RA和RD。

 35.JPG

  圖3:總硬件架構(gòu),支持M個(gè)硬件引擎同時(shí)運(yùn)行,在我們的實(shí)驗(yàn)中,M是32

  2)PCIe模塊:我們直接在時(shí)鐘頻率為250MHz的PCIe模塊中部署了用于PCI Express(PCIe)IP內(nèi)核的Xilinx DMA/橋接子系統(tǒng)。我們的PCIe驅(qū)動程序?qū)PGA上的運(yùn)行時(shí)參數(shù)映射給用戶,以便用戶能夠使用軟件代碼直接與FPGA交互。這些運(yùn)行時(shí)參數(shù)決定存儲在參數(shù)模塊中的控制和狀態(tài)寄存器。

  3)參數(shù)模塊:參數(shù)模塊維護(hù)運(yùn)行時(shí)參數(shù)并通過PCIe模塊與主機(jī)CPU通信,從CPU接收運(yùn)行時(shí)參數(shù)(例如S),并將吞吐量數(shù)據(jù)返回給CPU。  收到運(yùn)行時(shí)參數(shù)后,我們將使用它們來配置M個(gè)引擎模塊,每個(gè)引擎模塊都需要兩個(gè)256位控制寄存器來存儲其運(yùn)行時(shí)參數(shù):每個(gè)引擎模塊中的一個(gè)寄存器用于讀取模塊,另一個(gè)寄存器用于寫入模塊。在256位寄存器中,W占用32位,S占用32位,N占用64位,B占用32位,而A占用64位。剩余的32位保留供將來使用。設(shè)置完所有引擎之后,用戶可以觸發(fā)啟動信號以開始吞吐量/延遲測試。  參數(shù)模塊還負(fù)責(zé)將吞吐量編號(64位狀態(tài)寄存器)返回給CPU。每個(gè)引擎模塊專用一個(gè)狀態(tài)寄存器。

  4)延遲模塊:我們?yōu)閷S糜贏XI通道的每個(gè)引擎模塊實(shí)例化一個(gè)延遲模塊。等待時(shí)間模塊存儲大小為1024的等待時(shí)間列表,其中等待時(shí)間列表由關(guān)聯(lián)的引擎模塊寫入并由CPU讀取。它的大小是一個(gè)綜合參數(shù)。每個(gè)包含一個(gè)8位寄存器的等待時(shí)間,指從讀取操作的發(fā)出到數(shù)據(jù)從存儲控制器到達(dá)操作的延遲。

  實(shí)驗(yàn)設(shè)置

  在本節(jié)中,我們介紹經(jīng)過測試的硬件平臺(第IV-A小節(jié))和探討的地址映射策略(第IV-B小節(jié)),然后是硬件資源消耗(第IV-C小節(jié))和我們的基準(zhǔn)測試方法(IV-D小節(jié))。

  A.硬件平臺 我們在Xilinx的Alevo U280 [43]上進(jìn)行實(shí)驗(yàn),該實(shí)驗(yàn)具有兩個(gè)總?cè)萘繛?GB的HBM堆棧和兩個(gè)總?cè)萘繛?2GB的DDR4內(nèi)存通道。理論HBM內(nèi)存帶寬可以達(dá)到450 GB / s(450M * 32 * 32B / s),而DDR4內(nèi)存理論帶寬可以達(dá)到38.4GB / s(300M * 2 * 64B / s)。

  B.地址映射政策 可以使用多種策略將應(yīng)用程序地址映射到內(nèi)存地址,其中不同的地址位映射到存儲塊,行或列地址。選擇正確的映射策略對于最大化整體內(nèi)存吞吐量至關(guān)重要。表II中匯總了為HBM和DDR4啟用的策略,其中“ xR”表示x位用于行地址,“xBG”表示x位用于存儲體組地址,“ xB”表示x位用于存儲體地址,“ xC”表示x位用于列地址。HBM和DDR4的默認(rèn)策略分別為“RGBCG”和“ RCB”。“-”代表地址串聯(lián)。如果沒有特別指定,我們始終對HBM和DDR4使用默認(rèn)的內(nèi)存地址映射策略。例如,HBM的默認(rèn)策略是RGBCG。

  表格2:地址映射策略,藍(lán)色的是默認(rèn)

 34.JPG

  C.資源消耗明細(xì)

  在本小節(jié)中,我們將敘述7種資源的消耗。 對HBM進(jìn)行基準(zhǔn)測試時(shí),表III列出了每個(gè)實(shí)例化模塊的確切FPGA資源消耗。我們觀察到,豎亥只需要少量的資源來實(shí)例化32個(gè)引擎模塊以及PCIe模塊等其他組件,總資源利用率不到8%。

  表格3:資源消耗量

33.JPG

  D.測試方法

  我們旨在揭示豎亥使用下Xilinx FPGA上的HBM堆棧的底層細(xì)節(jié)。作為衡量標(biāo)準(zhǔn),我們在必要時(shí)還分析了同一FPGA板U280上DDR4的性能特征[43]。當(dāng)我們對HBM通道進(jìn)行基準(zhǔn)測試時(shí),我們將HBM和DDR4的性能特征進(jìn)行了比較(在第五節(jié)中)。我們認(rèn)為,針對HBM通道獲得的數(shù)字可以推廣到其他計(jì)算設(shè)備,例如具有HBM內(nèi)存的CPU或GPU。在HBM內(nèi)存控制器內(nèi)部對switch進(jìn)行基準(zhǔn)測試時(shí),由于DDR4內(nèi)存控制器不包含,因此我們不與DDR進(jìn)行比較(第六節(jié))。

32.JPG

  圖4:刷新指令帶來更高的訪問延時(shí)周期性地出現(xiàn)在HBM和DDR4中

  對HBM通道進(jìn)行基準(zhǔn)測試

  在本節(jié)中,我們旨在揭示Xilinx FPGA上使用Shuhai的HBM通道的詳細(xì)信息。

  A.刷新間隔的影響 當(dāng)存儲通道正在運(yùn)行時(shí),應(yīng)重復(fù)刷新存儲單元,以使每個(gè)存儲單元中的信息都不會丟失。在刷新周期中,不允許正常的內(nèi)存讀取和寫入事務(wù)訪問內(nèi)存。我們觀察到,經(jīng)歷內(nèi)存刷新周期的內(nèi)存事務(wù)比允許直接訪問內(nèi)存芯片的普通內(nèi)存讀/寫事務(wù)的等待時(shí)間長得多。因此,我們能夠通過利用正常和非刷新內(nèi)存事務(wù)之間的內(nèi)存延遲差異來大致確定刷新間隔。特別地,我們利用豎亥來測量串行存儲器讀取操作的延遲。圖4說明了B = 32,S = 64,W = 0x1000000和N = 20000的情況。我們有兩個(gè)觀察結(jié)果。首先,對于HBM和DDR4,與刷新命令一致的存儲器讀取事務(wù)具有顯著更長的延遲,這表明需要發(fā)出足夠多的動態(tài)存儲器事務(wù)來分?jǐn)偹⑿旅畹呢?fù)面影響。其次,對于HBM和DDR4,都定期計(jì)劃刷新命令,任何兩個(gè)連續(xù)刷新命令之間的間隔大致相同。

  B.內(nèi)存訪問延遲 為了準(zhǔn)確地測量內(nèi)存延遲,當(dāng)內(nèi)存控制器處于“空閑”狀態(tài)時(shí),即內(nèi)存控制器中不存在其他未決內(nèi)存事務(wù)的情況下,我們利用豎亥來測量連續(xù)內(nèi)存讀取事務(wù)的延遲。以最小的延遲將請求的數(shù)據(jù)返回到讀取的事務(wù)。我們旨在確定三種不同狀態(tài)下的延遲:page hit、page miss、page closed。

31.JPG

  圖5.三種狀態(tài)(page hit、page closed、page miss)的延時(shí)

  PageHit(頁面命中):當(dāng)內(nèi)存事務(wù)訪問其存儲區(qū)中打開的行時(shí),將發(fā)生“頁面命中”狀態(tài),因此在訪問列之前不需要“預(yù)充電”和“激活”命令,從而將等待時(shí)間降至最低。  PageClosed(頁面關(guān)閉):當(dāng)內(nèi)存事務(wù)訪問其對應(yīng)存儲體已關(guān)閉的行時(shí),將發(fā)生“頁面關(guān)閉”狀態(tài),因此在訪問列之前需要行AcTIvate命令。

  PageMiss(頁面丟失):當(dāng)內(nèi)存事務(wù)訪問的行與存儲區(qū)中的活動行不匹配時(shí),將發(fā)生“頁面丟失”狀態(tài),因此在訪問列之前發(fā)出了一個(gè)Precharge命令和一個(gè)AcTIvate命令,這導(dǎo)致了最大的延遲。  我們準(zhǔn)確測量B = 32,W = 0x1000000,N = 2000且S發(fā)生變化的情況下的等待時(shí)間數(shù)。直觀地講,小S導(dǎo)致?lián)糁型豁撁娴目赡苄院芨?,而大S可能導(dǎo)致?lián)糁型豁撁驽e過頁面。在本實(shí)驗(yàn)中,我們使用兩個(gè)S值:128和128K。 我們使用情況S = 128來確定頁面命中和頁面關(guān)閉事務(wù)的等待時(shí)間。S = 128小于頁面大小,因此大多數(shù)讀取事務(wù)將訪問一個(gè)打開的頁面,如圖5所示。其余點(diǎn)說明頁面關(guān)閉事務(wù)的等待時(shí)間,因?yàn)樾導(dǎo)致大量讀取特定內(nèi)存區(qū)域中的事務(wù)。我們使用S = 128K的情況來確定頁面丟失事務(wù)的等待時(shí)間。S = 128K導(dǎo)致HBM和DDR4的每個(gè)內(nèi)存事務(wù)發(fā)生頁面丟失。  總結(jié):我們在表IV中總結(jié)了HBM和DDR的延遲。我們有兩個(gè)觀察結(jié)果。首先,在相同的類別(如頁面點(diǎn)擊)下,HBM上的內(nèi)存訪問延遲比DDR4上高約50納秒。這意味著當(dāng)在FPGA上運(yùn)行對延遲敏感的應(yīng)用程序時(shí),HBM可能有劣勢。其次,延遲數(shù)是準(zhǔn)確的,證明了豎亥的效率。

  表格4.HBM和DDR4的內(nèi)存訪問,HBM的延時(shí)要高于DDR4

 30.JPG

  C.地址映射策略的效果

  在本小節(jié)中,我們研究了不同內(nèi)存地址映射策略對可實(shí)現(xiàn)吞吐量的影響。特別地,在不同的映射策略下,我們使用步幅S和訪問大小B來測量內(nèi)存吞吐量,同時(shí)將工作集大小W(= 0x10000000)保持足夠大。圖6說明了HBM和DDR4的不同地址映射策略的吞吐量趨勢。我們有五個(gè)觀察到的現(xiàn)象。  首先,不同的地址映射策略會導(dǎo)致明顯的性能差異。例如,圖6a說明,當(dāng)S為1024而B為32時(shí),HBM的默認(rèn)策略(RGBCG)幾乎比策略(BRC)快10倍,這說明為內(nèi)存應(yīng)用程序選擇正確的地址映射策略的重要性。  其次,即使HBM和DDR4采用相同的地址映射策略,其吞吐量趨勢也大不相同,這證明了豎亥等基準(zhǔn)平臺對評估不同的FPGA板或不同的存儲器的重要性。  第三,對于HBM和DDR4上的S和B的任何組合,默認(rèn)策略始終會帶來最佳性能,這表明默認(rèn)設(shè)置是合理的。 第四,較小的訪問大小導(dǎo)致較低的存儲器吞吐量,如圖6a,6e所示,這意味著FPGA程序員應(yīng)增加空間局部性,以從HBM和DDR4獲得更高的存儲器吞吐量。  第五,大的S(> 8K)總是導(dǎo)致內(nèi)存帶寬利用率極低,這表明保持空間局部性極為重要。換句話說,不保留空間局部性的隨機(jī)內(nèi)存訪問將遇到低內(nèi)存吞吐量。  我們得出結(jié)論,選擇正確的地址映射策略對于優(yōu)化FPGA上的存儲器吞吐量至關(guān)重要。

  D.儲存組的影響 在本小節(jié)中,我們研究了存儲組的影響,與DDR3相比,存儲組是DDR4的新功能。同時(shí)訪問多個(gè)存儲組有助于我們減輕DRAM時(shí)序限制的負(fù)面影響,而這種限制在幾代DRAM上并未得到改善。通過訪問多個(gè)存儲組可能會獲得更高的內(nèi)存吞吐量。因此,我們使用引擎模塊來驗(yàn)證儲存組的效果(圖6)。我們有兩個(gè)觀察到的結(jié)果。

 29.JPG

  圖6.在所有地址映射策略下,具有不同訪問大小和跨度的HBM通道和DDR4通道之間的內(nèi)存吞吐量比較。在本實(shí)驗(yàn)中,我們使用AXI通道0訪問其關(guān)聯(lián)的HBM通道0,以從單個(gè)HBM通道獲得最佳性能。我們使用DDR4通道0獲得DDR4吞吐量數(shù)字。我們觀察到,不同的地址映射策略會導(dǎo)致性能最高提高一個(gè)數(shù)量級,并且就吞吐量趨勢而言,HBM的性能特征與DDR4的性能特征不同。

  首先,如圖6a,6b,6c,6d所示,使用默認(rèn)地址映射策略,HBM允許使用較大步幅,同時(shí)仍保持高吞吐量。根本原因是,即使由于大的S而沒有充分利用每個(gè)行緩沖區(qū),存儲組級并行性也能夠使我們飽和利用內(nèi)存帶寬。  其次,在某些映射策略下,純順序讀取并不總是導(dǎo)致最高吞吐量。圖6b,6c說明,當(dāng)S從128增加到2048時(shí),較大的S在策略“ RBC”下可以實(shí)現(xiàn)較高的內(nèi)存吞吐量,因?yàn)檩^大的S允許同時(shí)訪問更多激活的存儲組,而較小的S可能導(dǎo)致僅一個(gè)活動的儲存組響應(yīng)用戶的存儲請求。 我們得出結(jié)論,在HBM和DDR4下利用儲存組級并行性來實(shí)現(xiàn)高內(nèi)存吞吐量至關(guān)重要。

 28.JPG

  圖7.空間局部性的影響,局部性能緩解大的步幅S的影響

  E.內(nèi)存訪問局部性的影響

  在本小節(jié)中,我們研究了內(nèi)存訪問局部性對內(nèi)存吞吐量的影響。我們更改訪問大小B和步幅S,并將工作集大小W設(shè)置為兩個(gè)值:256M和8K。W = 256M的情況是指無法從任何內(nèi)存訪問局部性受益,而W = 8K的情況是指受益的情況。圖7說明了HBM和DDR4上不同參數(shù)設(shè)置的吞吐量。我們有兩個(gè)觀察結(jié)果。

  首先,內(nèi)存訪問局部確實(shí)提高了大的S的情況下的內(nèi)存吞吐量。例如,在HBM上,(B = 32,W = 8K和S = 4K)情況下速度為6.7 GB / s,而(B = 32,W= 256M和S = 4K)僅為2.4 GB / s,這表明內(nèi)存訪問位置能夠消除較大步幅S的負(fù)面影響。其次,當(dāng)S較小時(shí),內(nèi)存訪問局部性不能增加內(nèi)存吞吐量。相比之下,由于片上緩存的帶寬比片外存儲器要高得多,因此內(nèi)存訪問局部性可以顯著提高現(xiàn)代CPU / GPU的總吞吐量[19]。

  F.總內(nèi)存吞吐量 在本小節(jié)中,我們探討了HBM和DDR4的總可實(shí)現(xiàn)內(nèi)存吞吐量(表V)。當(dāng)我們使用所有32條AXI通道進(jìn)行測試時(shí),經(jīng)過測試的FPGA卡U280上的HBM系統(tǒng)能夠提供高達(dá)425GB / s(13.27 GB / s * 32)的內(nèi)存吞吐量。  當(dāng)我們同時(shí)訪問經(jīng)過測試的FPGA卡上的兩個(gè)DDR4通道時(shí),內(nèi)存能夠提供高達(dá)36 GB / s(18 GB / s * 2)的內(nèi)存吞吐量。我們觀察到,HBM系統(tǒng)的內(nèi)存吞吐量是DDR4內(nèi)存的10倍,這表明增強(qiáng)了HBM的FPGA使我們能夠加速內(nèi)存密集型應(yīng)用程序,而這通常是在GPU上進(jìn)行加速的。  表格5.HBM和DDR4訪問速度對比,HBM要快一個(gè)數(shù)量級

 27.JPG

  在HBM控制器中對switch進(jìn)行基準(zhǔn)測試

  每個(gè)HBM堆棧將內(nèi)存地址空間劃分為16個(gè)獨(dú)立的偽通道,每個(gè)偽通道均與映射到特定地址范圍[41],[44]的AXI端口相關(guān)。因此,需要使用32×32開關(guān)來確保每個(gè)AXI端口都可以訪問整個(gè)地址。在HBM存儲器控制器中完全實(shí)現(xiàn)的32×32開關(guān)需要大量邏輯資源。因此,該switch僅被部分實(shí)現(xiàn),從而顯著減少了資源消耗,但實(shí)現(xiàn)了特定訪問模式的較低性能。我們在本節(jié)中的目標(biāo)是揭示switch的性能特征。 A.AXI通道和HBM通道之間的性能 在本小節(jié)中,我們將在時(shí)延和吞吐量方面測試任何一個(gè)AXI通道和任何HBM通道之間的性能特征。在完全實(shí)現(xiàn)的switch中,從任何AXI通道訪問任何HBM通道的性能特征都應(yīng)該大致相同。但是,在當(dāng)前的實(shí)現(xiàn)中,相對距離可能起著重要的作用。 1)內(nèi)存延遲:由于篇幅所限,我們僅使用所有AXI通道(從0到31)到HBM通道0發(fā)出的內(nèi)存讀取事務(wù)來演示內(nèi)存訪問延遲。對其他HBM通道的訪問具有相似的性能特征。與V-B小節(jié)中的實(shí)驗(yàn)設(shè)置相似,我們還使用引擎模塊來確定B = 32,W = 0x1000000,N = 2000以及S變化的情況下的準(zhǔn)確等待時(shí)間。表VI說明了32個(gè)AXI通道之間的等待時(shí)間差異。我們有兩個(gè)觀察結(jié)果。 首先,延遲差異最多可以達(dá)到22個(gè)周期。例如,對于頁面命中事務(wù),來自AXI通道31的訪問需要77個(gè)周期,而來自AXI通道0的訪問僅需要55個(gè)周期。其次,來自同一微型switch中任何AXI通道的訪問等待時(shí)間是相同的,這表明該微型switch已完全實(shí)現(xiàn)。例如,與AXI通道4-7關(guān)聯(lián)的微型switch對所有通道都顯示相同的內(nèi)存訪問延遲。我們得出結(jié)論,AXI通道應(yīng)訪問其關(guān)聯(lián)的HBM通道或靠近它的HBM通道,以最大程度地減少延遲。

  表格6.從32個(gè)AXI通道訪問HBM通道0的延時(shí),距離越遠(yuǎn)延時(shí)越高,可以達(dá)到22個(gè)周期

26.JPG

  2)內(nèi)存吞吐量:我們使用引擎模塊來測量從任何AXI通道(從0到31)到HBM通道0的內(nèi)存吞吐量,設(shè)置為B =64,W = 0x1000000,N = 200000,并且改變S。圖8說明了從每個(gè)小型switch中的AXI通道到HBM通道0的內(nèi)存吞吐量。我們觀察到AXI通道能夠?qū)崿F(xiàn)大致相同的內(nèi)存吞吐量,而不管它們的位置如何。

  25.JPG

  圖8,從八個(gè)AXI通道到HBM通道1的內(nèi)存吞吐量,其中每個(gè)AXI通道都來自小switch。每個(gè)AXI通道在訪問HBM通道1時(shí)具有大致相同的吞吐量,即使它們的訪問延遲可能明顯不同

  B.AXI通道之間的干擾

  在本小節(jié)中,我們通過使用不同數(shù)量(例如2、4和6)的AXI通道同時(shí)訪問同一HBM通道1,來檢查AXI通道之間的干擾影響。我們還改變了B的大小。表VII顯示了具有不同的B值和不同的AXI通道的吞吐量??罩当硎驹揂XI通道未參與吞吐量測試。我們有兩個(gè)觀察結(jié)果。首先,當(dāng)遠(yuǎn)程AXI通道數(shù)量增加時(shí),總吞吐量會略有下降,這表明交換機(jī)能夠以合理有效的方式為多個(gè)AXI通道提供內(nèi)存事務(wù)。其次,以循環(huán)方式安排微型switch中的兩個(gè)橫向連接和四個(gè)主機(jī)。以AXI通道4、5、8和9同時(shí)訪問且B = 32的情況為例,遠(yuǎn)程AXI通道8和9的總吞吐量大致等于AXI通道4或5的總吞吐量。

  相關(guān)工作

  就我們所知,豎亥是第一個(gè)全面地在FPGA上對HBM進(jìn)行基準(zhǔn)測試的平臺。我們將與豎亥密切相關(guān)的工作進(jìn)行對比:1)在FPGA上對傳統(tǒng)存儲器進(jìn)行基準(zhǔn)測試;2)使用HBM進(jìn)行數(shù)據(jù)處理;3)加速FPGA的應(yīng)用。

  表格7.遠(yuǎn)程AXI通道之間的沖突影響。我們使用不同數(shù)量(2、4或6)的遠(yuǎn)程AXI通道來訪問HBM通道1,以測量吞吐量(GB / s)。當(dāng)遠(yuǎn)程AXI通道的數(shù)量為2時(shí),AXI通道4和5處于活動狀態(tài) 。當(dāng)僅使用本地AXI通道1訪問HBM通道1時(shí),對于B = 32,B = 64或B =128的情況,吞吐量為6.67、12.9或13.3 GB / s??罩当硎鞠鄳?yīng)的AXI通道 不參與特定的基準(zhǔn)測試。

 24.JPG

  在FPGA上對傳統(tǒng)內(nèi)存進(jìn)行基準(zhǔn)測試。先前的工作[20],[22],[23],[47]試圖通過使用高級語言(例如OpenCL)在FPGA上對傳統(tǒng)存儲器(例如DDR3)進(jìn)行基準(zhǔn)測試。相反,我們在最先進(jìn)的FPGA上對HBM進(jìn)行基準(zhǔn)測試。

  使用HBM/ HMC進(jìn)行數(shù)據(jù)處理。先前的工作[4],[6],[15],[16],[21],[26],[27],[46]使用HBM來加速其應(yīng)用,例如哈希表深度學(xué)習(xí)和流式傳輸通過利用Intel KnightsLanding(KNL)的HBM [12]提供的高內(nèi)存帶寬。相比之下,我們在Xilinx FPGA板上測試了HBM的性能。  使用FPGA加速應(yīng)用程序。先前的作品[1],[3],[5],[7],[8],[9],[10],[11],[14],[17],[24],[25], [28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40] ] [45]使用FPGA加速了廣泛的應(yīng)用,例如數(shù)據(jù)庫和深度學(xué)習(xí)推理。相反,無論應(yīng)用如何,我們都在最新的FPGA上系統(tǒng)地對HBM進(jìn)行基準(zhǔn)測試。

  結(jié)論

  高帶寬存儲器(HBM)增強(qiáng)了FPGA,以解決IO密集應(yīng)用程序的存儲器帶寬瓶頸。但是,HBM的性能特征仍未在FPGA上進(jìn)行定量和系統(tǒng)的分析。我們通過在具有兩層HBM2子系統(tǒng)的最新FPGA上對HBM堆棧進(jìn)行基準(zhǔn)測試來揭秘。相應(yīng)的,我們建議使用豎亥來對HBM的基本細(xì)節(jié)進(jìn)行測試。從獲得的基準(zhǔn)測試數(shù)據(jù)中,我們觀察到:1)HBM提供高達(dá)425 GB / s的內(nèi)存帶寬,大約是最新GPU的內(nèi)存帶寬的一半,2)如何使用HBM對性能有著顯著影響,這反過來證明了揭露HBM特征的重要性。豎亥可以很容易地推廣到其他FPGA板或其他的存儲器模塊。我們將使相關(guān)的基準(zhǔn)測試代碼開源,以便可以探索新的FPGA板并比較各個(gè)板的結(jié)果。



更多信息可以來這里獲取==>>電子技術(shù)應(yīng)用-AET<<

mmexport1621241704608.jpg

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。