《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 業(yè)界動態(tài) > 簡化嵌入式邊緣 AI 應(yīng)用開發(fā)的步驟

簡化嵌入式邊緣 AI 應(yīng)用開發(fā)的步驟

2022-02-28
來源:CTIMES
關(guān)鍵詞: 嵌入式 TI 邊緣AI

tify;">  如果嵌入式處理器供貨商沒有合適的工具和軟件,設(shè)計(jì)節(jié)能的邊緣人工智能 (AI) 系統(tǒng),同時(shí)加快上市時(shí)間可能會變得窒礙難行。挑戰(zhàn)包括選擇正確的深度學(xué)習(xí)模型、訓(xùn)練和優(yōu)化模型以實(shí)現(xiàn)性能和準(zhǔn)確度目標(biāo),以及學(xué)習(xí)用于在嵌入式邊緣處理器上部署模型的專有工具。

  從模型選擇到處理器部署,TI 提供免費(fèi)工具、軟件和服務(wù),協(xié)助完成深度神經(jīng)網(wǎng)絡(luò) (DNN) 開發(fā)工作流程的每一個(gè)步驟。逐步選擇模型、隨處訓(xùn)練模型,并無縫部署到 TI 處理器上,完全不需要任何手工制作或手動程序設(shè)計(jì),藉以進(jìn)行軟件加速推論。

  步驟 1:選擇模型

  邊緣 AI 系統(tǒng)開發(fā)的首要任務(wù)是選擇正確的 DNN 模型,同時(shí)考慮系統(tǒng)的性能、準(zhǔn)確度和功率目標(biāo)。和 GitHub 上的 TI 邊緣 AI 模型庫等工具有助于您加速這個(gè)過程。

  這個(gè)模型庫是 TensorFlow、PyTorch 和 MXNet 框架常用開放原始碼深度學(xué)習(xí)模型的大型集合。這些模型在公共數(shù)據(jù)集上進(jìn)行預(yù)先訓(xùn)練,并經(jīng)過優(yōu)化,可在 TI 處理器上有效運(yùn)作而實(shí)現(xiàn)邊緣 AI。TI 會定期使用來自開放原始碼社群的最新模型以及 TI 設(shè)計(jì)的模型更新模型庫,提供最多樣化的性能和精準(zhǔn)的優(yōu)化模型。

  藉由模型庫中的數(shù)百個(gè)模型,TI 模型選擇工具 (如圖一所示) 可以協(xié)助快速檢視和比較推論處理量、延遲、準(zhǔn)確度和雙倍數(shù)據(jù)速率帶寬,完全不需要撰寫任何程序代碼。

  1646003795783623.png

  本文引用地址:http://www.eepw.com.cn/article/202202/431510.htm

  圖一 : TI 模型選擇工具

  步驟 2:訓(xùn)練和調(diào)整模型

  選擇模型后,下一個(gè)步驟是訓(xùn)練或優(yōu)化模型,藉以在 TI 處理器上實(shí)現(xiàn)最佳性能和準(zhǔn)確度。運(yùn)用我們的軟件架構(gòu)和開發(fā)環(huán)境可以隨處訓(xùn)練模型。

  從 TI 模型庫中選擇模型時(shí),訓(xùn)練腳本可以根據(jù)特定任務(wù)的自定義數(shù)據(jù)集快速傳輸和訓(xùn)練模型,完全不需要從頭開始進(jìn)行長時(shí)間的訓(xùn)練或手工制作模型。對于自己的 DNN 模型,訓(xùn)練腳本、框架擴(kuò)展和量化感知訓(xùn)練工具有助于優(yōu)化模型。

  步驟 3:評估模型性能

  在開發(fā)邊緣 AI 應(yīng)用之前,需要在實(shí)際軟件上評估模型性能。

  使用 TensorFlow Lite、ONNX RunTime 或 TVM 以及 SageMaker Neo with Neo AI DLR 運(yùn)行時(shí)間引擎的最常用業(yè)界標(biāo)準(zhǔn) Python 或 C++ 應(yīng)用程序設(shè)計(jì)界面 (API),只需要幾行程序代碼,TI 的彈性軟件架構(gòu)和開發(fā)環(huán)境即可隨處訓(xùn)練自己的模型,并且編譯模型再部署到 TI 硬件。在這些業(yè)界標(biāo)準(zhǔn)運(yùn)行時(shí)間引擎的后端, TI 深度學(xué)習(xí) (TIDL) 模型編譯和運(yùn)行時(shí)間工具可以為 TI 軟件編譯模型、將編譯后的圖形或子圖形部署到深度學(xué)習(xí)軟件加速器上,并獲得優(yōu)化推論處理器的性能,完全不需要任何手動操作。

  在編譯步驟中,訓(xùn)練后量化工具可以將浮點(diǎn)模型自動轉(zhuǎn)換為定點(diǎn)模型。這組工具透過配置文件進(jìn)行層級混合精度量化 (8 位和 16 位),達(dá)到調(diào)整模型編譯的絕佳彈性,藉以展現(xiàn)最佳性能和準(zhǔn)確度。

  各種常用模型的操作不盡相同。TI 邊緣 AI 基準(zhǔn)檢驗(yàn)工具 也位于 GitHub 上,有助于您將 DNN 模型功能與 TI 模型庫中的模型無縫搭配,并做為自定義模型的參考。

  有兩種方法可以在 TI 處理器上評估模型性能:TDA4VM 入門套件評估模塊 (EVM) 或TI Edge AI Cloud,這是免費(fèi)的在線服務(wù),支持遠(yuǎn)程訪問 TDA4VM EVM 評估深度學(xué)習(xí)推論性能。用于不同任務(wù)和運(yùn)行時(shí)間引擎組合的多個(gè)范例腳本可以在不到五分鐘的時(shí)間內(nèi)在 TI 軟件上進(jìn)行加速推論的程序設(shè)計(jì)、部署和執(zhí)行,同時(shí)收集基準(zhǔn)。

  步驟 4:開發(fā)邊緣 AI 應(yīng)用

  使用開放原始碼 Linux 和業(yè)界標(biāo)準(zhǔn) API能夠?qū)⒛P筒渴鸬?TI 軟件上。不過,將深度學(xué)習(xí)模型部署到軟件加速器上只是其中的一部分。

  為了協(xié)助快速建構(gòu)高效率的邊緣 AI 應(yīng)用,TI 采用 GStreamer 框架。GStreamer 插件可以將計(jì)算密集型任務(wù)的端對端訊號鏈自動加速到軟件加速器和數(shù)字訊號處理核心上。

  圖二 顯示邊緣 AI 的 Processor SDK with Linux 有關(guān)的軟件堆棧和組件。

  1646003832996071.png

  圖二 : 邊緣 AI 的 Processor SDK with Linux 組件

  結(jié)論

  即使不是 AI 專家,亦可開發(fā)和部署 AI 模型或建構(gòu) AI 應(yīng)用。TI Edge AI Academy有助于在進(jìn)行測驗(yàn)的自定進(jìn)度課堂式環(huán)境中學(xué)習(xí) AI 基礎(chǔ)知識,并了解 AI 系統(tǒng)和軟件程序設(shè)計(jì)。實(shí)驗(yàn)室提供建構(gòu)「Hello, World」人工智能應(yīng)用的逐步程序代碼,而具有攝影機(jī)拍攝和顯示的端對端進(jìn)階應(yīng)用程序,可按照自己的步調(diào)成功開發(fā)人工智能應(yīng)用。

  (本文作者M(jìn)anisha Agrawal任職于德州儀器)




mmexport1621241704608.jpg


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。