京都獎是由稻盛和夫創(chuàng)辦的國際獎項,被認為是亞洲諾貝爾獎。
每年,該獎項會頒發(fā)給為科學進步、文明發(fā)展以及人類精神的豐富和提升做出卓越貢獻的個人。京都獎分為先進技術、基礎科學、藝術與哲學三個類別,每個類別包括四個領域,共計12個領域。三個類別各頒發(fā)一個獎項,每個類別的獎金為1億日元。
今年早些時候,清華大學交叉信息研究院院長姚期智獲得了2021年京都獎,以表彰他對計算和通信新理論及其安全基礎理論做出了開創(chuàng)性貢獻。
姚期智開創(chuàng)了計算機科學的新趨勢,通過建立具有創(chuàng)新性的計算和通信基礎理論,為各個領域的前沿研究做出了巨大貢獻,特別是在安全、安全計算和量子計算方面。他的成就持續(xù)影響著當前的現(xiàn)實世界問題,例如安全、安全計算和大數(shù)據(jù)處理。
姚期智和其他兩位2021年京都獎得主在2021年京都獎特別網(wǎng)站上都有相關介紹,包括作品、簡介和三分鐘的介紹視頻。今年的京都獎還授予了洛克菲勒大學生物化學和分子生物學領域的教授Robert G. Roeder(基礎科學類);巴黎政治學院名譽教授Bruno Latou(藝術與哲學類)。
今天, 2021年京都獎官網(wǎng)發(fā)布了姚期智為本次獎項進行的英文報告——“計算機科學之旅”。出于科學傳播的目的,我們將該報告整理成文,以饗讀者。
在這份報告中,姚期智分享了他年輕時和學術生活中的故事,以及他從物理學和計算機科學的成就中所獲得的見解。
回顧了自己的研究生涯,他說道:“在科學中,范式是尋求真理。在這個過程中,我們有時會發(fā)現(xiàn)可以升華人類精神的樣式和美感。它也追求創(chuàng)新以改善人類境況,讓我們?yōu)槲磥砣祟愋枰鎸Φ奶魬?zhàn)做好準備。”
女士們,先生們,我很高興來到這里。首先我要說,獲得京都獎是一種莫大的榮幸。了解了歷屆獲獎者和他們的輝煌成就后,我為自己被認為值得與他們齊名而深感謙卑,也很高興和榮幸在這里發(fā)言。
今天,我想談談我的成長經(jīng)歷,如何進入計算機科學領域,以及一路走來的旅程。
更詳細地,我將從我的背景開始,講一講我小時候對物理學的癡迷,這后來促成了我選擇了第一個職業(yè),然后,我會講到我是如何偶然轉換領域并成為一名計算機科學家的。之后我會簡單介紹我的研究工作、我所思考的問題以及它們?yōu)槭裁从腥ぁ=Y束之前,我還要向幾位對我的生活和工作產(chǎn)生重大影響的人致敬。
1946年,我出生在中國上海。不久后,我的家人搬到了香港,然后又搬到了臺灣。我在一個幸福的中產(chǎn)階級家庭長大,有慈愛的雙親和兩個非常親密的兄弟/姐妹 。
我從小深受中國傳統(tǒng)價值觀熏陶,特別是對文化和學習非常重視。令我和我父母欣慰的是,我是一名優(yōu)秀的學生,學生時期一直是名列前茅。
我記得我小時候喜歡數(shù)學、科學和歷史。
對歷史人物著迷,是因為他們表現(xiàn)出不同尋常的勇敢和智慧。像伽利略和牛頓這樣的科學家,他們也是我心目中的英雄,因為他們的才華以及為自己的信仰挺身而出的勇氣,讓我大為震撼。我夢想有一天自己也會成為這樣的人。
高中三年級,我偶然發(fā)現(xiàn)了亞瑟·愛丁頓爵士關于相對論的筆記副本,其中給出了相對論最生動、最簡單的推導。
大致如下:實驗中,我們已經(jīng)知道光具有恒定的速度。從這一事實,我們可以巧妙地推導出我們熟悉的時間概念不可能是一個絕對普遍的概念。而長期以來,這一點是每個人都認為理所當然的事情。
這個論點給我留下了深刻的印象。我發(fā)現(xiàn),物理學可以像偵探故事一樣吸引人,而且比“福爾摩斯”中任何聰明的情節(jié)都更具想象力。這令我深受鼓舞。于是在1963年,我在大學選擇了主修物理。
不久之后,理查德·費曼的物理學講義發(fā)表了。
傳說加州理工學院想從根本上重組他們的物理學大一課程,費曼同意這樣做,條件是他只教一次。由此誕生了傳奇的三卷本物理學講義《費曼物理學講義》。
這個系列講義讓我大開眼界。難以解釋的高級概念,結果其證明只用初級數(shù)學就可以解釋和推導出來。這真是令人印象深刻,讓我看到了物理學的深度和美妙。
事實上,這是我第一次覺得自己真正理解了量子力學的原理。30年后,當我開始從事量子計算領域的工作時,費曼對量子現(xiàn)象的解釋在我看來仍然是最有啟發(fā)性和最有用的解釋。
這讓我堅定下來,決定在大學畢業(yè)后繼續(xù)在物理學深造。1967年,我大學畢業(yè)后服了一年兵役,之后前往哈佛大學攻讀物理學研究生。1972年,我在Sheldon Glashow教授的指導下獲得了物理學博士學位。
最終我成為了真正的物理學家,但這并沒有持續(xù)多久。1973年,當時我在麻省理工學院攻讀博士學位的妻子Frances向我介紹了“算法”。
算法這個詞今天已頻繁出現(xiàn)在日常生活中,但在當時,對大多數(shù)人來說,這是一個非常陌生的詞匯。當時,我接觸到高德納教授編寫的《計算機程序設計藝術》的早期草稿。這是一本很有名的關于算法的書,一個多么了不起的杰作,它介紹了一門引人入勝的新科學。
閱讀后,我開始不斷思考書中提出的研究問題,深陷其中而無法自拔,以至于我很快就辭去了物理學博士后的工作,轉而全職攻讀計算機科學研究生。
我記得我母親當時很擔心我,因為我似乎放棄了這么多年的物理工作,但我的妻子非常支持我。所以我成為了伊利諾伊大學的計算機科學研究生。非常感謝CL Liu教授愿意接受我。
接下來,我將講述我的工作。最初,我專注于解決算法中現(xiàn)有的開放問題,例如最小生成樹、B樹等。但畢業(yè)后不久,我開始對開發(fā)計算機科學的新框架和新理論產(chǎn)生興趣。
幾十年來,我有機會在幾所一流大學工作。我在伯克利、斯坦福度過了10年,隨后在普林斯頓度過了18年。2004年,我加入了清華大學,直至今日。
在每個時期,我都在做一些不同的事情。很有趣的是,我在不同時期關注的主題,它們與時代的變化和計算機科學作為一門學科的發(fā)展,以及身處的大學環(huán)境都有很大關系。
接下來,我想要介紹三個主題,極大極小算法(min max complexity),通信復雜度(communication complexity),以及密碼學和MPC。
我發(fā)現(xiàn)做研究最好的方法是提出深刻、大膽和關鍵性的問題。如果你能提出好問題,那么就一定會做好研究,得出對學術界來說實用且有重大意義的結論?,F(xiàn)在我將對每個主題的主要問題及其重要性進行討論。
第一個是1977年提出的極大極小算法問題。它在我心中有很特殊的位置,因為這是我第一次提出了自己的研究問題,并找到了很好的解決方法。我們知道,算法本質上和食譜很像。例如在烹飪中,食譜會告訴你每步的步驟,例如放3盎司鹽或幾克肉。
20世紀70年代中期,一種新的算法引起了人們的注意,即“隨機化算法”(Randomized algorithm)。這種新算法結合了隨機移動(stochastic moves)。如果用烹飪來比喻的話就是,不明確告訴你有放兩勺鹽的步驟,而是讓你用扔硬幣決定是放兩勺鹽,還是放一杯紅酒。
因此,對于傳統(tǒng)的思維方式來說,這看起來是一種瘋狂的做事方式。但在20世紀70年代,人們已經(jīng)證明以這種方式執(zhí)行算法是有優(yōu)勢的,在某些情況下,它們會產(chǎn)生一些令人驚嘆的結果。但人們還無法理解這些算法的局限性。
因此,這讓我產(chǎn)生了一個問題。到底哪個算法更好?是當時剛剛提出的隨機化方法,還是用傳統(tǒng)的方法觀察數(shù)據(jù)分布,并在執(zhí)行過程中調整呢?
一旦用這種方式提出了這個問題,那么就出現(xiàn)了一種令人驚喜的聯(lián)系,讓人們可以對隨機化算法有了很多的了解。
當把隨機化算法與傳統(tǒng)分布方法進行比較時,可以將其視為隨機化算法和數(shù)據(jù)之間的博弈。算法(可以根據(jù)數(shù)據(jù))選擇如何隨機移動,而數(shù)據(jù)(對手)可以選擇分布方式,從而使算法的運行變得更加困難。在博弈論極大極小原理(馮·紐曼)的作用下,這兩種方法恰好達到了它們的極限。
這個聯(lián)系給出了我們想要證明的定理,也就是說事實上這兩種方法是相同的。這為理解隨機化算法提供了新途徑。在現(xiàn)在,這種在當時還算新穎的算法已經(jīng)成為許多密碼技術和人工智能算法的默認模式。
人們想了解隨機化算法的局限性是有原因的。因此,在40多年的時間里,我發(fā)現(xiàn)的算法仍然被許多研究人員用來來解決他們的問題。第二個主題是我在1979年提出的通信復雜性。
讓我先解釋一下這個數(shù)學問題,愛麗絲和鮑勃是兩個在不同地點的人,他們各自持有一條n個比特的數(shù)據(jù),比如x和y。我們想要解決的問題是,假設它們想要聯(lián)合計算某個量f,它們之間需要通信多少比特,這就是這個函數(shù)的通信復雜度。
當然,這取決于你在計算什么函數(shù),例如,要計算這兩個整數(shù)的和是奇數(shù)還是偶數(shù)只需要兩個比特的通信。每個人只需告訴對方它是偶數(shù)還是奇數(shù),然后他們就可以知道答案了。
另一方面,如果你想計算x是否大于y,那么它將需要n比特。你需要把整個字符串從一個人發(fā)送給另一個人才能解決這個問題。更深一層的是,你必須意識到并證明,沒有比這種方式來解決這個問題更好的方法了。一般來說,這是一個相當困難的問題。如果我給你一個關于F的計算復雜性,那需要相當深入的數(shù)學分析才能完成。
考慮通信復雜度的原因是,計算模式在20世紀70年代末發(fā)生了很明顯的變化。從之前大家都熟悉的大型計算機,逐漸轉向我們現(xiàn)在熟悉的計算機網(wǎng)絡。人們對以分布式方式解決問題感興趣,許多人愿意協(xié)作解決問題。
因此,這意味著我們必須把過去的計算模型調整為網(wǎng)絡模型。在這個新的世界里,通信成本通常是很高的,因為我們必須移動數(shù)據(jù)。因此,我剛剛向你們的介紹的通信復雜度的概念就是為了模擬和反映這種變化。
自從該模型被提出和分析以來,通信復雜性在從芯片設計到數(shù)據(jù)流的各個領域都得到了廣泛的應用。我要討論的最后一個話題是關于密碼學和MPC。
1982年,我寫了三篇論文,這些論文對現(xiàn)代密碼學做出了重大貢獻。這三篇論文涉及Dolev-Yao威脅模型、偽隨機數(shù)生成算法(pseudo random number generation)和安全多方計算(MPC)。今天我只談最后一個問題。
MPC是一個加密概念,使我們可以對加密數(shù)據(jù)進行計算。如果您使用MPC,就有可能讓多個數(shù)據(jù)庫在不泄露它們自己的數(shù)據(jù)的情況下進行聯(lián)合計算。
也就是說,我們可以在看不到數(shù)據(jù)的情況下共享數(shù)據(jù)。讓我用一個例子來解釋一下這一點。我將引用在論文中提到的著名的億萬富翁的例子。
兩個百萬富翁,愛麗絲和鮑勃,他們希望在不透露任何數(shù)據(jù)信息的情況下知道誰更有錢。所以愛麗絲有X百萬,鮑勃有Y百萬。所以數(shù)學問題是,他們想要彼此交流來知道X是否小于Y。問題是,是否有可能進行一次對話,讓雙方在不知道對方數(shù)據(jù)的情況下又知道誰更富有呢?
直覺上來說你會認為這是不可能的。我怎樣才能在不透露任何一方任何信息的情況下找出誰更富有呢?如果你想幾分鐘你就會意識到,如果采用1982年的信息安全定義,也就是香農(nóng)的信息論(Shannon's information theory),那確實是不可能的,你可以證明在那個模型下是不可能的。
但我認為,需求是所有發(fā)明之母。如果真的有需要的話你肯定會想盡一切辦法。所以,如果你跳出框框去思考,事實證明這是可能的。說到跳出框框,我們的意思是需要丟棄香農(nóng)在這種情況下規(guī)定的非常死板的條條框框,然后把艾倫·圖靈納入其中,我不會對此說太多。但事實證明,如果你把安全定義放寬一些,讓它變成一個務實且足夠好的標準,那么這個問題事實上是有解的。具體地說,我用“亂碼電路”(garble circuit)實現(xiàn)了解決方案。
在過去近40年的發(fā)展中,它在硬件和算法方面取得了進步,現(xiàn)在幾乎是可行的。而這方面的研究工作也很多,準備在金融科技、數(shù)據(jù)交易、藥物研發(fā)等方面開展工作。
目前我還有一些其他的研究課題,就不一一詳述了。我的課題包括:革命性、有望實現(xiàn)指數(shù)級增長的量子計算技術;可以用博弈論來解決經(jīng)濟問題的拍賣理論;人工智能,這項技術見證了AlphaGo等機器學習算法取得的令人難以置信的壯舉,但成功的原因仍然是個謎。
所有這些都是非常有趣的新領域,而且還在持續(xù)發(fā)展中。如你所見,我研究過很多不同的課題。這些豐富多彩的課題,實際上不僅反映了我個人的喜好,也反映了半個世紀以來信息科學的蓬勃發(fā)展,以及我們今天所看到的日益增長的跨學科聯(lián)系。
最后,我想對我人生中遇到的人說幾句話。
在這些年里,作為一名計算機科學家,我有幸遇到了許多才華橫溢的人。我非常幸運地遇到了兩位給我巨大靈感的導師,Glashow教授和Knuth教授 。
Glashow教授是我在哈佛大學的物理學博士導師。他是最先預言存在Charm Quarks這種粒子的人之一,也是這種粒子最積極的倡導者。
我從Glashow教授那里學到,在科學上你必須大膽,你必須堅持不懈地堅持你的信仰。
我從他身上學到的另一件事是,數(shù)學和物理是不同的。對于物理學家來說,最重要的是能夠找出物理現(xiàn)實的真相,而不是堅持精確的數(shù)學論證。我認為這種務實精神對我以后的研究有很大幫助。
還有一件事是我從Glashow教授那里學到的:生活應該是有趣的。
1971年春天,作為一個年輕的學生,我跟隨他去法國馬賽的CNRS休假。這是一個多么神奇和迷人的城市,那也是我第一次來歐洲。那年夏天的晚些時候,他帶我去了意大利西西里的一個暑期學校。
這是一次非常美妙的經(jīng)歷。Gladshow教授給我上的這一課讓我明白,生活的樂趣和對知識的追求可以兼而有之。
現(xiàn)在,我想提一下Knuth教授。正如我之前所提到的,當我讀到《計算機編程的藝術》時,它幾乎改變了我的生活。在這本著作中,他確實開創(chuàng)了一個新的研究領域,也激勵了一代又一代新的計算機科學家。
例如,通過閱讀他的書,我開啟了自己的計算機科學生涯,并解決了一些他在書中所闡述的問題。
后來,我有幸成為他在斯坦福的同事。眾所周知,除了數(shù)學和計算機科學之外,Knuth教授在許多方面都很在行。他是一位才華橫溢的管風琴演奏家。他還是一位作曲家、小說家等。
所以他多才多藝,且也真誠大方。他總是在別人身上看到好的一面。
總而言之,雖然經(jīng)歷了一些曲折,但我在計算機科學領域還是度過了一段美好的旅程。我發(fā)現(xiàn),一開始就走錯方向可能并不是什么壞事。
事實上,早期的物理訓練至少在兩個方面對我有很大幫助。
首先,我了解到好的理論在物理學中是什么樣子的,比如經(jīng)典的相對論和量子力學。在之后提出計算機科學的理論時,這對我有很大的幫助。
我從物理學中受益的第二件事是它的務實精神。它教會我解決手頭的特定問題。不管用什么方法,你都應該根據(jù)情況使用、學習或發(fā)明解決問題的方法,最終目標是解決問題。
科學是對真理的追求。在這個過程中,我們會發(fā)現(xiàn)科學規(guī)律和科學的美,提升人類共同的精神。它還帶來了創(chuàng)新,可以改善人類的現(xiàn)狀,為未來所面臨的挑戰(zhàn)做好準備。
我完全同意稻盛和夫基金會(Inamori Foundation)的愿景,即科學和人文應該為人類的進步而共同努力。我很榮幸能獲得京都獎,也很榮幸能做這次演講,與聽眾分享我的經(jīng)歷。非常感謝。