通過電源模塊提高電動工具設(shè)計的性能
電動工具、 園藝工具和吸塵器等家電使用低電壓(2至10節(jié))鋰離子電池供電的電機驅(qū)動。這些工具使用有刷直流(BDC)或三相無刷直流(BLDC)電機。BLDC電機效率更高、維護少、噪音小、使用壽命更長。
驅(qū)動電機功率級的最重要的性能要求是尺寸小、效率高、散熱性能好、保護可靠、峰值電流承載能力強。小尺寸可實現(xiàn)工具內(nèi)的功率級的靈活安裝、更好的電路板布局性能和低成本設(shè)計。高效率可提供最長的電池壽命并減少冷卻工作。可靠的操作和保護可延長使用壽命,有助于提高產(chǎn)品聲譽。
為在兩個方向上驅(qū)動BDC電機,您需要使用兩個半橋(四個金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET))組成一個全橋。要驅(qū)動三相BLDC電機,需要使用三個半橋(六個MOSFET)組成一個三相逆變器。
使用TI的采用堆疊管芯架構(gòu)的CSD88584Q5DC 和CSD88599Q5DC電源模塊(小型無引線(SON),5mm×6mm封裝),您可通過兩個電源模塊和只帶三個電源模塊的三相BLDC電機在兩個方向驅(qū)動電機,如圖1所示。每個電源模塊連接兩個MOSFET(高側(cè)和低側(cè)MOSFET),組成一個半橋。
圖1:不同電機驅(qū)動拓撲中的功率塊MOSFET
我們來看看這些功率塊可帶給無繩工具電機驅(qū)動子系統(tǒng)設(shè)計的優(yōu)勢。
功率密度倍增
CSD885x功率塊中的雙重堆疊芯片技術(shù)使印刷電路板(PCB)面積達到了之前的兩倍,與分立MOSFET相比,PCB占地面積減少了50%。
與相同性能級別的分立MOSFET(5mm×6mm)相比,在同一封裝中集成兩個FET的功率塊可讓用于逆變器拓撲的三相PCB面積減少90 mm2(3 x 5mm-6mm)。MOSFET互連軌道將與在帶分立MOSFET的PCB中運行,而更高的工作電流也要求更寬的PCB軌跡,因此PCB尺寸的節(jié)省值實際上遠超90 mm2。大多數(shù)無繩電動工具應(yīng)用至少使用四層PCB,銅厚度大于2盎司。因此,通過電源模塊節(jié)省PCB尺寸可大大節(jié)省PCB成本。
具有低寄生效應(yīng)的清潔MOSFET開關(guān)
圖2所示為功率級PCB設(shè)計中由元件引線和非優(yōu)化布局引起的寄生電感和電容。這些PCB寄生效應(yīng)會導(dǎo)致電壓振鈴,從而導(dǎo)致MOSFET上的電壓應(yīng)力。
圖2:功率級半橋中的寄生電感和電容。
振鈴的原因之一是二極管反向恢復(fù)。由快速開關(guān)引起的高電流變化率可能導(dǎo)致高二極管反向恢復(fù)電流。反向恢復(fù)電流流經(jīng)寄生布局電感。由FET電容和寄生電感形成的諧振網(wǎng)絡(luò)引起相位節(jié)點振鈴,減少了電壓裕度并增加了器件的應(yīng)力。圖3所示為由于電路寄生效應(yīng)引起的具有分立MOSFET的相位節(jié)點電壓振鈴。
使用電源模塊時,具有連接兩個MOSFET的開關(guān)節(jié)點夾將高側(cè)和低側(cè)MOSFET之間的寄生電感保持在絕對最小值。在同一封裝中使用低側(cè)和高側(cè)FET可最大限度地減少PCB寄生,并減少相節(jié)點電壓振鈴。使用這些電源模塊有助于確保平滑的驅(qū)動MOSFET開關(guān),即使在電流高達50A時也不會出現(xiàn)電壓過沖,如圖4所示。
圖3:具有分立MOSFET的相節(jié)點電壓振鈴和電壓過沖
圖4:帶有電源模塊的清潔相位節(jié)點切換波形
低PCB損耗,PCB寄生電阻降低
功率塊有助于減少PCB中高電流承載軌道的長度,從而減少軌道中的功率損耗。
讓我們了解分立FET的PCB軌道要求。頂部和底部分立MOSFET之間的PCB軌道連接導(dǎo)致PCB中的I2R損耗。圖5所示為將頂部和底部分立MOSFET并排連接時的銅軌道;這是可將電機繞組連輕松連接到PCB的常見布局之一。連接相位節(jié)點的銅面積的長度為寬度的兩倍(軌道寬度取決于電流,軌道寬度通常受電路板的外形尺寸限制)?;蛘撸梢陨舷屡帕许攤?cè)和底側(cè)分立MOSFET,保持在相位節(jié)點之間。但是由于需要提供將電機繞組連接到相位節(jié)點,您可能無法減少軌道長度,并且這種布置可能不適合所有應(yīng)用。
若設(shè)計的PCB銅厚度為2oz(70μm),則連接圖5所示的相位節(jié)點的單層PCB軌道將具有約0.24mΩ的電阻。假設(shè)軌道存在于兩個PCB平面中,則等效PCB電阻為0.12mΩ。對于三相功率級,您有三個這樣的PCB軌道。您也可對直流電源輸入和返回軌道進行類似的分析。
電源模塊具有單個封裝中的頂側(cè)和底側(cè)MOSFET,以及通過封裝內(nèi)的金屬夾連接的相位節(jié)點,可優(yōu)化寄生電阻,并為布局提供靈活性,并可節(jié)省最小的0.5至1mΩ的總PCB電阻。
圖5:具有分立MOSFET的典型相位節(jié)點軌道長度
卓越的散熱性能,雙重冷卻
CSD885x電源模塊采用DualCool?封裝,可在封裝頂部實現(xiàn)散熱,從而將熱量從電路板上散開,提供出色的散熱性能,并提高在5mm×6mm封裝中的功率。根據(jù)數(shù)據(jù)手冊規(guī)范,功率塊具有1.1°C/W的結(jié)到底殼體熱阻,和2.1°C/W的結(jié)到頂殼體的熱阻。您可優(yōu)化功率塊底殼的PCB或功率塊的頂蓋的散熱片的冷卻功能。圖6所示為在1kW,36V三相逆變器PCB(36mm×50mm)內(nèi)使用三個CSD88599Q5DC雙冷60V電源模塊測試的頂側(cè)公共散熱器(27mm×27mm×23mm)的結(jié)果,不帶任何氣流。在測試期間,散熱器和功率塊頂殼之間使用具有低熱阻抗(Rθ<0.5°C / W)的電絕緣熱接口。
圖6:顯示有效頂側(cè)冷卻的電路板的熱像
在圖6中,您可看到頂側(cè)冷卻的有效性,其中PCB上觀察到的最大溫度(功率塊底殼之下)與散熱器溫度之間的差異小于11°C。熱量傳導(dǎo)良好,并通過電源模塊的頂部冷卻金屬焊盤分配到頂側(cè)散熱器。
頂側(cè)和底側(cè)FET之間的熱量共享
在單相或三相逆變器中,頂側(cè)和底側(cè)MOSFET的損耗可能不同。這些損耗通常取決于脈寬調(diào)制拓撲的類型和工作占空比。不同的損耗導(dǎo)致頂側(cè)和底側(cè)MOSFET的加熱不同。在系統(tǒng)設(shè)計中使用分立MOSFET時,可以嘗試這些不同的方法來平衡頂側(cè)和底側(cè)FET之間的溫度:
·為MOSFET使用不同的冷卻區(qū)域,并為具有更大損耗的MOSFET提供更多的PCB銅面積或散熱器。
·根據(jù)其額定電流,為頂側(cè)和底側(cè)的MOSFET使用不同的器件。例如,您可使用具有較小導(dǎo)通狀態(tài)導(dǎo)通電阻(R DS_ON)的器件,用于承載更多電流的MOSFET。
當(dāng)MOSFET變熱時,這些方法不會提供最佳冷卻,這取決于工作占空比,導(dǎo)致PCB面積或MOSFET額定值利用不足。使用功率塊MOSFET,其中頂側(cè)和底側(cè)MOSFET處于同一封裝中,從而實現(xiàn)頂側(cè)和底側(cè)MOSFET之間的自動熱共享,并提供更好的熱性能和優(yōu)化的系統(tǒng)性能。
系統(tǒng)成本低
可通過在設(shè)計中使用功率塊MOSFET來優(yōu)化系統(tǒng)成本。如果此博文中所述的所有優(yōu)勢均達成的話,即可降低成本:
·一半的解決方案尺寸,大大降低PCB成本。
·低寄生效應(yīng)可實現(xiàn)更可靠的解決方案,其具有更長的壽命且維護少。
·降低PCB軌道長度會降低PCB電阻,從而通過較小的散熱器降低損耗,提高效率。
·卓越的熱性能可提高冷卻效果。
MOSFET功率塊有助于實現(xiàn)更可靠、更小尺寸、高效率和具有成本競爭力的系統(tǒng)解決方案。
其它資源
·查看我們最新的采用TI 40-MOSFET MOSFET功率塊的參考設(shè)計
·了解我們的緊湊型1kW功率級參考設(shè)計 如何為36V無刷直流(BLDC)電機實現(xiàn)99%的效率
·了解更高功率密度的需求如何推動創(chuàng)新
·了解功率MOSFET模塊的更多信息