《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > HOGG 基于Gabor變換與HOG特征的人體檢測(cè)
HOGG 基于Gabor變換與HOG特征的人體檢測(cè)
2016年微型機(jī)與應(yīng)用第21期
范國(guó)娟1,范國(guó)卿2,柳絮青3
1.山東傳媒職業(yè)學(xué)院,山東 濟(jì)南 250200;2.絲路衛(wèi)星通信有限公司,江蘇 南京 210012;3.江南大學(xué),江蘇 無(wú)錫 214122
摘要: 針對(duì)實(shí)際監(jiān)控中人體目標(biāo)輪廓的多尺度特性,提出一種用于人體目標(biāo)檢測(cè)的多尺度方向特征描述子(HOGG)。首先采用Gabor濾波器提取人體圖像對(duì)應(yīng)不同尺度、不同方向的多個(gè)Gabor幅值域圖譜,然后將相同尺度不同方向的幅值域圖譜融合以降低特征維數(shù),并對(duì)每幅融合圖像提取梯度方向直方圖(HOG)特征,最后將這些HOG特征聯(lián)合起來(lái)作為人體圖像表征。利用支持向量機(jī)(SVM)對(duì)描述特征進(jìn)行分類(lèi),在CAVIAR數(shù)據(jù)庫(kù)中進(jìn)行了實(shí)驗(yàn),結(jié)果表明,該算法對(duì)人體目標(biāo)檢測(cè)具有較好的性能。
Abstract:
Key words :

  范國(guó)娟1,范國(guó)卿2,柳絮青3

 ?。?.山東傳媒職業(yè)學(xué)院,山東 濟(jì)南 250200;2.絲路衛(wèi)星通信有限公司,江蘇 南京 210012;3.江南大學(xué),江蘇 無(wú)錫 214122)

       摘要:針對(duì)實(shí)際監(jiān)控中人體目標(biāo)輪廓的多尺度特性,提出一種用于人體目標(biāo)檢測(cè)的多尺度方向特征描述子(HOGG)。首先采用Gabor濾波器提取人體圖像對(duì)應(yīng)不同尺度、不同方向的多個(gè)Gabor幅值域圖譜,然后將相同尺度不同方向的幅值域圖譜融合以降低特征維數(shù),并對(duì)每幅融合圖像提取梯度方向直方圖(HOG)特征,最后將這些HOG特征聯(lián)合起來(lái)作為人體圖像表征。利用支持向量機(jī)(SVM)對(duì)描述特征進(jìn)行分類(lèi),在CAVIAR數(shù)據(jù)庫(kù)中進(jìn)行了實(shí)驗(yàn),結(jié)果表明,該算法對(duì)人體目標(biāo)檢測(cè)具有較好的性能。

  關(guān)鍵詞:人體檢測(cè);Gabor變換分塊直方圖;多尺度

0引言

  人體檢測(cè)被廣泛地用于計(jì)算機(jī)視覺(jué)領(lǐng)域,如公共安全、智能機(jī)器人、視覺(jué)監(jiān)控、行為分析等[1]。目前人體檢測(cè)多采用基于統(tǒng)計(jì)分類(lèi)的方法,常用Gabor小波變換和Haar小波變換提取人體特征。DALAL N[2]等人提出梯度直方圖(Histograms of Oriented Gradient,HOG),利用圖像塊內(nèi)的方向統(tǒng)計(jì)進(jìn)行人體檢測(cè),對(duì)解決局部形變與視角變化等問(wèn)題,該檢測(cè)算法具有較高的精度。Mu Yadong[3]等人將局部二值模式(Local Binary Patterns,LBP)作為人體特征描述算子,具有旋轉(zhuǎn)不變性和光照不變性,是一種有效的描述特征。Wang Xiaoyu[4]等人提出了HOG與LBP相結(jié)合的算法,達(dá)到兩種特征互補(bǔ)的效果,對(duì)解決人體檢測(cè)中部分遮擋問(wèn)題有顯著的提高。

  上述輪廓特征一般都是在固定尺度上計(jì)算,沒(méi)有考慮實(shí)際監(jiān)控中復(fù)雜背景下人體目標(biāo)輪廓的多尺度特性,當(dāng)這些算法應(yīng)用到真實(shí)場(chǎng)景中時(shí),其性能會(huì)急劇下降。本文提出一種Gabor變換與HOG特征相結(jié)合的人體檢測(cè)算法(簡(jiǎn)稱(chēng)HOGG),利用Gabor變換多方向多尺度的特性,增強(qiáng)了人體的輪廓信息。該方法首先對(duì)圖像進(jìn)行規(guī)一化處理,然后使用Gabor濾波器提取圖像多尺度、多方向的幅值域圖譜,并將同尺度不同方向幅值域圖譜融合以降低特征維數(shù),最后按順序提取各個(gè)尺度上融合圖譜的HOG特征,串接組成整幅圖像的描述特征。在CAVIAR數(shù)據(jù)庫(kù)下的大量實(shí)驗(yàn)表明,該方法能較好地提取人體描述特征,有較高的檢測(cè)率。

1Gabor特征提取

  在提取人體Gabor特征之前需要對(duì)圖像進(jìn)行規(guī)一化處理,本文實(shí)驗(yàn)中所用人體圖像為灰度圖像,大小為32×64像素。為了獲取多尺度的Gabor特征,選取5個(gè)尺度和8個(gè)方向的Gabor濾波器組,則一幅人體圖像的多尺度、多方向特征表示為:

  QQ圖片20161207113100.png

  通過(guò)Gabor變換后,每幅圖像會(huì)轉(zhuǎn)化成40個(gè)不同尺度與方向的圖像,特征維數(shù)為原圖像的40倍,造成特征數(shù)據(jù)冗余,增加了計(jì)算的復(fù)雜度。本文將Gabor特征同一尺度不同方向的特征進(jìn)行融合,有效地降低了Gabor特征間的數(shù)據(jù)冗余,保持了有效的決策信息,并可以對(duì)人體圖像進(jìn)行多尺度分析。

2HOGG描述子

  本文對(duì)融合圖像進(jìn)一步提取HOG特征,并將其聯(lián)合起來(lái)作為人體圖像的HOGG表征。HOGG的構(gòu)建過(guò)程主要分為以下幾個(gè)步驟:

  (1)計(jì)算梯度幅值和方向

  利用一階模板算子(-1,0,1)分別從橫向和縱向?qū)θ诤蠄D像進(jìn)行梯度提取操作,求得融合圖像的梯度圖像。

  (2)構(gòu)建梯度方向直方圖

  把梯度圖像分成同等大小的正方形小塊(block),這些小塊是相互重疊的并且每個(gè)小塊被分為更小的正方形單元(cell,n×n像素)。利用梯度幅值和梯度方向在每個(gè)單元中進(jìn)行直方圖投票,其中梯度方向作為直方圖投票區(qū)間,而梯度幅值作為直方圖投票權(quán)重,這樣對(duì)于每個(gè)小塊(block)都能得到一個(gè)維度為m×m×b的直方圖向量。

  (3)梯度強(qiáng)度歸一化

  以block為單位進(jìn)行L2norm標(biāo)準(zhǔn)化,減少局部光照以及前景、背景對(duì)比度的變化對(duì)直方圖特征的影響。設(shè)vn是對(duì)應(yīng)的block向量,則標(biāo)準(zhǔn)化的向量fn為:

  QQ圖片20161207113105.png

  其中:ξ為接近0的正數(shù)。

  (4)形成特征向量

  把一幅融合圖像的所有塊中的HOG特征連接起來(lái)就得到了該融合圖像的HOG特征。再將各尺度融合圖像的HOG順接起來(lái)作為一幅人體圖像的HOGG描述子。

3實(shí)驗(yàn)分析

  3.1實(shí)驗(yàn)環(huán)境與數(shù)據(jù)庫(kù)

  在Core(TM)2.00 GHz的CPU,2.00 GB內(nèi)存,Windows下MATLAB R2010a的計(jì)算機(jī)上進(jìn)行仿真實(shí)驗(yàn)。實(shí)驗(yàn)采用MIT和INRIA數(shù)據(jù)庫(kù)作為訓(xùn)練集,包括1 126個(gè)正樣本與1 218個(gè)負(fù)樣本;采用CAVIAR[5]數(shù)據(jù)庫(kù)作為測(cè)試集。

  3.2實(shí)驗(yàn)步驟

  本文采用滑動(dòng)窗口方式獲取檢測(cè)窗口,用HOGG描述子對(duì)檢測(cè)窗口進(jìn)行描述,再利用支持向量機(jī)[6]進(jìn)行判別。由于在檢測(cè)過(guò)程中,對(duì)同一個(gè)人體進(jìn)行多重檢測(cè)會(huì)直接導(dǎo)致計(jì)算效率下降。為此,本文將檢測(cè)窗口從大到小進(jìn)行遍歷。在遍歷過(guò)程中,如果待測(cè)區(qū)域已經(jīng)被標(biāo)記為人體,則跳過(guò)該區(qū)域。

  3.3實(shí)驗(yàn)結(jié)果與分析

  Gabor能對(duì)圖像進(jìn)行多尺度、多方向的分解,實(shí)驗(yàn)首先研究不同尺度數(shù)對(duì)檢測(cè)算法的影響。從CAVIAR四個(gè)序列中各隨機(jī)選取200張圖片作為測(cè)試集。實(shí)驗(yàn)結(jié)果如表1所示。

  

圖像 006.png

  實(shí)驗(yàn)中采用綜合評(píng)價(jià)指標(biāo)(F1measure,F(xiàn))[7]評(píng)估算法的性能,其中:precision為準(zhǔn)確率,recall為查全率;tp表示被正確檢測(cè)人數(shù),fp表示錯(cuò)誤檢測(cè)的人數(shù),fn表示漏檢的人數(shù)。

  由于不同尺度子帶間冗余信息較大,簡(jiǎn)單地增加尺度數(shù)不一定能提高性能,由表1可以看出,取尺度數(shù)為4效果最佳。

  為了進(jìn)一步驗(yàn)證本文提出的算法,選取Gabor尺度為4,在CAVIAR行人數(shù)據(jù)庫(kù)上提取HOGG特征,參照文獻(xiàn)[4]與HOG、LBP+HOG算法做了對(duì)比實(shí)驗(yàn),如表2所示。

圖像 007.png

  從圖1可以看出,本文算法的Fmeasure優(yōu)于當(dāng)前其他方法,具有較好的性能,證明了HOGG方法的有效性。

圖像 008.png

4結(jié)論

  本文提出了一種基于Gabor變換和HOG的人體目標(biāo)檢測(cè)的新特征表達(dá),可以多層次、多分辨率地表征人體目標(biāo)。在CAVIAR數(shù)據(jù)庫(kù)中的實(shí)驗(yàn)數(shù)據(jù)表明,Gabor多尺度的變換能夠增強(qiáng)HOG算子對(duì)人體紋理細(xì)節(jié)特征和全局特征的表示能力,有效地提高了人體檢測(cè)的性能。

  參考文獻(xiàn)

 ?。?] HARITAOGLU I,HARWOOD D,DAVIS L S. W4:realtime surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,(S01628828),2000,22(8) : 809-830.

 ?。?] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,CVPR IEEE 2005:886-893.

  [3] Mu Yadong,Yan Shuicheng, Liu Yi,et al. Discriminative local binary patterns for human detection in personal album [C]. Computer Vision and Pattern Recognition,Anchorage,AK,2008:1-8.

 ?。?] Wang Xiaoyu,HAN T X,Yan Shuicheng. An HOGLBP human detector with partial occlusion handling [C]. Computer Vision, Kyoto,2009:32-39.

 ?。?] CAVIAR. Benchmark Data [EB/OL].[2016-07-01]. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

 ?。?] KIM S K,PARK Y J,TOH K A, et al. SVM based feature extraction for face recognition [J]. Pattern Recognition,2010,43(8): 2871-2881.

  [7] bluepoint2009. 準(zhǔn)確率(Precision)、召回率(Recall)以及綜合評(píng)價(jià)指標(biāo)(F1 Measure)[EB/OL].(2012-09-18)[2015-06-21].http://www.cnblogs.com/bluepoint2009/archive/2012/09/18/precisionrecallf_measures.html.

  


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。