3D打印機已經(jīng)可以用金屬或者高分子材料制作樣品和備件了。普林斯頓大學(xué)的研究者現(xiàn)在將該項技術(shù)的潛能又提升了一大步,他們開發(fā)了一種用半導(dǎo)體和其他材料打印出可發(fā)揮正常功能的電子電路的方法。此外,他們還優(yōu)化了打印方法,可以將電子部件和生物相容性的材料甚至活體組織整合到一起,從而為將新材料植入生物體開辟了一條新途徑。
該項目的負(fù)責(zé)人、普林斯頓大學(xué)助理教授邁克爾·麥凱派恩(MichaelMcAlpine)解釋說,利用盛滿半導(dǎo)體“墨水”的“墨盒”,應(yīng)該可以打印出能發(fā)揮所有功能的電路。為了證明這一奇思妙想,研究者在一個隱形眼鏡中打印出了一個發(fā)光二極管(LED)。
一臺電腦中有處理器和顯示電路并不意味著它們就能驅(qū)動3D打印,因為3D打印需要很多用納米材料制作的復(fù)雜構(gòu)成。不過3D打印機可用來制作醫(yī)療器械或者將醫(yī)療器械植入電子部件。麥凱派恩舉例說,研究者可以打印一個用于培養(yǎng)神經(jīng)組織的支架。如果他們還可以在支架中打印LED和電路,那么,光就能刺激神經(jīng)組織,這樣的電子部件就能應(yīng)用于義肢。
2013年,麥凱派恩就利用3D打印技術(shù)制作出了一個“生物電子”仿生耳。這個仿生耳用活細(xì)胞制成,內(nèi)有黏稠凝膠制作的支持性基層;此外,他們還用導(dǎo)電墨水——這種墨水用含有懸浮的銀納米粒子制成——打印了一個可接受無線電信號的通電線圈。
其后,麥凱派恩的研究團隊一直在努力將3D打印技術(shù)擴展到半導(dǎo)體材料,這種材料可以讓打印出的器械能處理傳入的聲音。半導(dǎo)體是信息處理電路的一種重要構(gòu)成,同時也可用于探測光和發(fā)光。
為了擴展3D打印的范圍,麥凱派恩的研究團隊開發(fā)出一款打印機,當(dāng)今市場上的大部分3D打印機都只能打印塑料。“如果你把其他物質(zhì)放進(jìn)墨盒,打 印機就會堵塞。”麥凱派恩說。另外,他們還要讓打印機能進(jìn)行高分辨率打印。舉例來說,仿生耳的某些功能是在毫米級的組件上實現(xiàn)的——所以,他們要打印出微 米級的LED。
為了打印出這種LED,普林斯頓大學(xué)的研究者選擇了“量子點”(quantumdots)LED——這種半導(dǎo)體納米粒子在電流的刺激下會發(fā)出非 常明亮的光。另外,他們還用兩種金屬打印出了導(dǎo)線以聯(lián)通這種器械,并用高分子材料和有機硅將各個部件整合到一起。用如此之多的“墨水”打印的一個難點是 “墨水”之間可能會混合。所以,研究者必須要讓每一種材料懸浮在一種不會讓它們混合到一起的溶劑中。
麥凱派恩的研究團隊制作出了一個由八個發(fā)出綠色光和橙色光的LED構(gòu)成的立方體,LED兩兩堆疊在一起。這些研究者還在一個隱形眼鏡上打印出了LED,打印LED之前,他們掃描了隱形眼鏡的形狀,以確保打印出的設(shè)備與鏡片表面的曲度保持一致。
“LED還只是3D打印有源電子器件的一個例證。”麥凱派恩說。他還表示,一旦研究者可以打印有源電子材料,他們就應(yīng)該能夠打印出信息處理電路、傳感器、光檢測器以及其他部件——并能將他們與生物組織整合到一起。
麥凱派恩及其同事并不是快速擴展3D打印能力的唯一團隊。“大部分3D打印都像經(jīng)過調(diào)整的熱熔膠槍,只能打印高分子材料。”位于羅利 (Raleigh)的北卡羅萊納州立大學(xué)(NorthCarolinaStateUniversity)的化學(xué)工程師邁克爾·狄克尼 (MichaelDickey)說,他的團隊開發(fā)出了一種液體金屬,這種金屬可被打印成具有延展性的自我修復(fù)導(dǎo)線。哈佛大學(xué)生物學(xué)教授詹妮弗·劉易斯 (JenniferLewis)受工程學(xué)的啟發(fā),一直在開發(fā)組織工程學(xué)3D打印技術(shù),該技術(shù)將把包括血管在內(nèi)的多種細(xì)胞類型以復(fù)雜的形式整合到一起。
麥凱派恩正在采用這項新技術(shù)制作定制化的生物醫(yī)學(xué)設(shè)備,有些產(chǎn)品已在進(jìn)行動物實驗。他沒有透露這種尚未公開的項目的細(xì)節(jié),不過他談到,他已開始利用活細(xì)胞制作復(fù)雜的電子設(shè)備了。